DOCUMENT RESUME

ED 075255
TITLE
INSTITUTION
SPONS AGENCY

BUREAU NO
PUB [ATE
CONTRACT
NOTE.
EDRS PRICE
DESCRIPTORS

IDENTIFIERS

Self-Paced Physics, Documentation Report; Management System Report 5.4a.
Naval Academy, Annapolis, Md.; New York Inst. of Tech., Old Westbury.
Office of Education (DHEW), Washington, D.C. Bureau of Research.
BR-8-0446
71
N00600-68-C-0749
155 p.
$\mathrm{MF}-\$ 0.65 \mathrm{HC}-\$ 6.58$
Academic Performance; College Science; *Curriculum Development; Feedback; *Operations Research; *Physics; *Programed Instruction; Program Guides; *Program Improvement; Science Education Self Paced Instruction

Abstract

As a supplement to the principal reports, the underlying management system of the U. S. Naval Academy Self-Paced Physics course is presented in this documentation report. The management system is discussed on three "levels" which are intrinsic in the programmed-instruction format, focused on remedial activities, and related to the handling of student performance data. Detailed information is given in connection with the recommended course implementation procedures, nature and form of tests, methods of scoring and recording scores, kinds of feedback provided by students, methods of presenting feedback, record-keeping procedures and forms, and computer-managed operations. Also described are the methods of utilizing data generated during the course to evaluate and improve the course material and presentation strategies. Besides a flow chart reflecting the responsibilities of students, clerks, instructors, and managers, a total of 25 exhibits and illustrations are provided. (Related documents are SE 016065 - SE 016088 and ED 062123 - ED 062 125.) (CC)

US DEPARTMENT OF HEALTH EDUCATION \& WELFARE OFFICE OF EDUCATION IHIS DOCUMENT HAS BEEN REFRO JUCED EXACTH AS RECENEO FHON IHE PERSON OR ORGANIZAIION ORIG INATING II PGINIS OF VIEW OR OPIN IONS STATEO DO NOI NECE'ASARII HEPRESENT OFFICIAL OFFICE OH EDU CAIION POSIIION OH POLIC.

This document is a supplement to the principal reports $5.10,5.9$, and 5.8 , developed and produced under the U. S.
 Office of Education, Bureau of Research
Project \#8-0446, for the U. S. Naval
Acadeny at Annapolis, Maryland.
Contract \#N00600-68C-0749.

5.4(a) MANAGEMENT SYSTEM

DOCUMENTATION REPORT 5.4(a)

MANAGEMENT SYSTEM REPORT

NEW YORK INSTITUTE OF TECHNOLOGY

```
SPRING }197
```


MANAGEMENT SYSTEM REPORT

TABLE OF CONTENTS

1. Introduction 1
2. Course and Data Management Manual 6
2.1 Learning Resourzes un be Managed 7
2.1.1 Problem and Sciution Book 10
2.1.2 Remedial Sheets 10
2.1.3 Audiovisuals 14
2.1.4 Texts 16
2.1.5 Instructoi: 16
2.1.6 Laboratory Sessions 17
2.2 Aanagement Devices and Controls 19
2.2.1 Study Guides, Progress Checks (including Remedial Progress Check), and Quarterly Diagnostics 19
2.2. $\ddot{\text { Z Sample Management Reports }}$ 26
2.3 Control Points and Orientation 32
2.3.1 Flow Charts and Interfaces--Student, Instructor, Course Manager, and Clerical Points 33
2.3.2 Instructor/Student Orientation 361. Notes to tha Instructor2. The Managemer.t Sequence3. Course Policy4. The Self-Paced Laboratery5. The Student Manual
2.4 Information and Data Handling Procedures 55
2.4.1 Data Preparation Prior to Course Implementation 55

MANAGEMENT SYSTEM REPORT

TABLE OF CONTENTS

(Continued)
2.4.1.1 Establish Course Structure 551. Student Background and Enrollment
2. Preparation of Cource Header File3. Preparation of Question File
2.4.1.2 Data Veirification and Updating 56
2.4.2 Course-in-Progress Procedures 57
2.4.2.1 Student Data 57

1. Data Preparation2. Progress Check3. Quarterly Diagnostic4. Study Guide
2.4.2.2 Report Descriptions 71
2. Performance Data Analysis for Course Revision and Optimization 92
3.1 Systems Description 93
3.2 User's Description 123
3.3 Supplement 142
3.4 Copies of Programs 149

MANAGEMENT SYSTEM REPORT

LIST OF EXHIBITS

Student Background Card
Course Header Card

Question Descriptioi Card
Student Performance

Student TO Key Sheet

Class Roster

Course Roster

Student Drop Card
Permanent Hoader File

Course Śtructure Summary

Port-a-Punch (5 choice--4 choice)
Port-a-Punch Student Response Card

Student Response OpScan Form
Instruciions for Completing Student Diagnostic Answer Sheet
Individual Student Analysis
Terminal Objective Remedial Summary
Remedial Session Lesson Flan

Remedial Session Roster

Volume Summary

MANAGEMENT SYSTEM REPORT

LIST OF ILLUSTRATIONS

Remediai Sheet
Study Guide
Progress Check
Student Diagnostic Answer Sheet
Progress Check Report Forms
Diagnostic Report Forms

1. INTRODUCTION

MANAGEMENT SYSTEM REPORT

1. INTRODU̇CTION

Background
This Report is the product of an extensive educational rasearch and development. effort that was conducted in conjunction with the U.S. Naval Academy and the N.Y.I.T. Learning, Management \& Resources Center. Documented in this manual are procedures which are based on the Educational philosophy and management techniques developed during an O.E. sponsored, three-year experiment. We do not purport to have created the "perfect" management system, but rather a system which contains the foundatịon for practical implementation and the ability to evolve when dynamic educational needs become apparent.

The Management System operates on three "levels." T..e course, in essence, is made up of sophisticated, multimedia, multi-resources, independent study materials presented in a branching programmed-instruction format, with a maximum of response demand frequency. The student's progress through a variety of learning experiences, ranging from tests and conventional lectures to single concept audiovisual materials and tutorial sessions, is guided by his own responses and is student selfm.nnaged to a high degreje.

The first level of management is, therefore, Instrinsic in the programmed-instruction format.

The second level of management derives from instructional
activity focused upon tutorial remediation as indicated necessary by immediate analysis of student performance on the study guide response
sheets and progress (criterion-referenced) checks. This remediation may be individual, or grouped by student section, and may be based, in part, upon analysis of individual student performance alone, or as related to parallel performance of the rest of the sections or to the class as a whole. The tools for this management are the students' responses and the item analysis performed by the clerical data management support groups.

The third leve? is provided by the output of the compuier or Data Management Group which Ltilizes the performance data from the progress checks and quarterly diagrostic exams to provide a more in-depth prescription for indepfindent and group remediation.

The input of all student responses into the computer also provides the basis for the revision guidelines for use in optimizing the course materiais.

Une of the many factors determined during the experiment was that, using the system's approach, the data handing capability of the computer in $\dot{\sim}$ judgment represented the best of two distinct management methods.

The procedures set forth in this manual reflect the most current concepts in course management deriving from the experiences of this contract.

Purpose

The procedures for implementation of the management system are described in two sub-manuajs:

1) The Course \& Data Management Manual, and
2) The Performance Data Analysis for Course Revision \& Optimization.

The Course \& Data Management Manual describes to the course manager: a) requirements for planning and preparation needed prior to course implementation; and b) procedures, decisions and record keeping required while the course is in progress.

The Performance Data Analysis for Course Revision \& Optimization contains descriptions for utilizing the data generated during the course in order to evaluate and improve the course material, material presentation and strategies, and the management system itszif.

Instruments

In order to accomplish the several levels of management, a large number of recording methodologies, reporting devices, test forms and instructions to the students, data manager, instructors and course managers have been created. Examples of these instructions have been incorporated herein, directly or as exhibits.

Associated Documents

The following documents are a necessary part of understanding and implementing the full computer managed portion of the system:

Course \& Data Management Manual
User's Manual: A350

Operator's Guide: A380
Program Logic Manual: A370

Systems Manual: A360
\therefore :
Performance Data Analysis for Course Revision \& Gpimization
Systems Descroption
User's Description

Supplement
Programs

Additionally, many pertinent technical reports have been sub- !
mitted during the course of, and as final reports to, the multimedia physics development program. These reports contain the rationales and experimental data analyses upon which the management system has been built. In these technical reports will be found the justification for all the elements of the management system. .
2. COURSE AND DATA MANAGEMENT MANUAL

2. COURSE AND DATA MANAGEMENT MANUAL

2.1 Learning Resources + 'Manined

Several purpose is the program's development and operation. The Academy 1, ,uovided with a cost-effective physics course designed with the most modern educational technology. The experience garnered in the construction of the program is incorporated into a course development model. to serve as a prototype for construction of similar programs in other hard science courses. Extensive record keeping capabilities of tine program allow it to serve as a vehicle for educational research.

The course is individualized, self-paced, and self-healing. By offering media options and optional routes through the learning materials, each student's learning experience is individualized. Likewise, within broad time constraints, the student can progress through these materials at his own pace.

The self-healing aspect of the program pertains to learning 'materials and processes. These are improved by an fterative process of successive tryouts and revisions. In this way, the program undergoes an empirical optimization procedure.

Most standard topics in introductory classical physics are included in the two-semester course: mechanics, wave phenomena, electificity, magnetism, and optics. One unusual feature is the omission of heat and thefmodynamics in favor of more intensive developments. in mechanics and optics to suit the Academy's particular needs. The subfect matter is loosely defined as university physics with calculus at the level of Halliday and Resnさck.

Optimization of the program must be attained empirically, since no satisfactory predictive theory of educational psychology is known. This situation is well suited to a systems approach when the output of the system can be fed back to modify the system input.

This approach requires that the course objectives are clearly defined and measurable so that the output of the system is quantitative. Consequently, over a thousand measurable behavioral objectives (MBOs) were developed to completely specify the performance which the program should elicit. MBOs fall into two categories: terminal objectives (TOs) which describe the desired final student behavior, and the subordinate enabling objectives (EOs) which are steps toward the terminal behavior.

The TOs constitute a complete description of course content and are represented in the course by central core problems. When a student can answer a core problem correctly, he is said to have achieved that $T O$. In this way a student knows exactly what is expecter oi him as to content and level of proficiency.

When a studeme cannot answer a core problem after a single exposure, he can execute mordinate enabling problems which correspond to the EOs. At the end an enabling sequence, the student is presented with another version of core problem to check his achievement of the TO. All these problems are contained in the Problem and Solution Book volumes.

Videotape presentations are available for forty-nine topics. These tapes average about fifteen minutes apiece. Illustrated texts and talking books (taped voice-over illustrations in book form) are available with essentially the same information content as the videotapes.
(Computer-assisted instruction (CAI) was initially included as a parallei path for topics in mechanics, primarily to be compared with the other options for cost effectiveness, and was deleted as a learning option in the final revision.) Conventional physics texts are also included among the available lemone urials.

Each studulis provided with a Study Guide which directs bim through the problem books and various media assignments. When the student completes a specified assignment (roughly approximated by a chapter in Halliddy and Resnick), he schedules' a 'rogress Check (test) n the material. This criterion check does not influence his grade but is used for management and remediation purposes. Grades are determined by quarterly tests and final examinations for each semester.

Minor remediation is accomplished by distributing a remedj.al sheet associnated with each lem missed on the \mathbb{P} rogress Check. Thes ϵ
 references pertinent auxizary material. Moressious remediation -is providediby individual tumal sessions with: professor.

The laboratories have as their objectives the measurement of fundamental physical quantities, including the processing and recording of this datamith an error analysis. An innovative aspect of the data analysis intiat a dialogue may be established between the student and the compurernich would culminate in the student's achievement of the objectiver: This computer-dialogue lab format is not an essential element of the maltimedia learning materials, and in the current implementation the Navy physics staff is using a conventional laboratory experience for the self-paced course.

2.1.1 Problem and Solution Book (P \& S)

This is bound study material which contains the work of forty-five (45) segments for a semester. Each Problem and Solution Book contains:
a) A problem section in which the questions are presented in a sequential order;
b) A solution section in which the correct method of answering is presented;
c) Infornation Panels strategically placed throughont the problem section.

A description of the topics covered by the segments
is as follows:

Measurement and Vectors
Vector Multiplicatanam Velocity
Motion in 0 ae and Twa Rmensions
Newten's Laws of Motior
Line Motion: Eriction:
Unifiorm Circular Motion
Work and Energy
Conservatiun of Energy
Motion of the Center of Mass
Linear Momentum
Impulse and Collisions in One Dimension
Colljsions in Two Dimensions
Gravitation
Gravitational Potential Energy
Electric Charge and Comiomb's Law
The Electrich Fipald
Electric Field Problens;
Ewetric Dipoles and Hfectric Flux

```
Canss's Law
Ertric Potential
Elactric Potential Energy
C aritance
F. sy Stored in Capacitors
©. nnt and Resistance
F actrical Energy \& Electromotivive
                    Force
Circuits \& Kirchhoff's Rules
Ammeters \& Voltmeters
Charge in a Magnetic Field
Current in a Magnetic Field
Magnetic \#ux \& the Earth's
                    Magnetic Field
Ampere's Law
The Biot-Savart Law
Faraday's Law of Induction
Self Inductance
The RC Circuit
The LR Circuit
```

menty additional segments were' prepared by the Naval Academy staff.

2.1.2 Remedial Sheets

The student receives a remedial sheet for each question
he misses on the Progress Check (PC). The remedial sheet contains:
a) A restatement of the appropriate core
problem;
b) Reading assignments, and
c) Related problems when appropriate.

The remedial sheet serves as a multi-purpose remediation elemepending upon the student's achievement level in specifically identifinill problems on the Progress Check. For example:

Achievement
mannpogress Check is:
Student Use of Remedial

1) R Retains for review purposes
2) S5—— 70% correct Reviews remedial and schedules Progress Check retalke only on appropriafe core proms
3) HfO Iters correct

Reviews medial, edules tutorian \equiv sion Arogress Check retake.

It is necessary, therefor that suffent number of coper Mentred in advance for each Pross Check ito be used. Several miplas of remedials follow.

SEGMENT 1

MEASUREMENT AND VECTORS

Problem 6: Addition of Vectors
6. A plane travels 40 miles due north, then changes its course to a direction of 37° east of north and travels for 50 miles. Finally it travels for 30 miles due east. Its total displacemert is:
A. 100 miles
B. 120 miles
C. 100 miles at 37° east of north
D. 120 miles at 37° east of north

Reading Assigrmerre

Halliday and Resnick:
Semat and Blumenthal:

Ch. 2, 1-3
Vo1. IT, 2 , Fr 11-18, 36-40

Related Problems=
Ch, $\mathrm{I}_{\boldsymbol{m}}$ (atos. 1, 2, 14

SEGMENT 1

MEASUREMENT AND VECTORS

Problem 10: Resolution of Vectors

10.

Find the componarts R_{x} and R_{y} of the vector \vec{R}, wherewector \vec{R} is the resultant (sum) of the wectors \vec{A}, \vec{B}, and \vec{C}. Use themcoordiwate system indicated.
A. $R_{x}=A \sin \theta \quad R_{y}=A \cos \theta$
B. $\mathrm{K}_{\mathrm{x}}=\mathrm{B} \cos \theta \quad \mathrm{R}_{\mathrm{y}}=\mathrm{A} \cdot \sin \theta$
C. $\quad R_{x}=B-A \sin \theta \quad R_{y}=C-A \cos \theta$
D. $\quad R_{x}=C-B \cos \theta \quad R_{y}=A-B \sin \theta$

Reading Assignment:

Halninday and Resnick:
Semat and Blumenthal:

Cn. 2, Sect. 3
Wol. I, Ch. 2, $\operatorname{Er} 34-36$

Related meroblems:
Scheam:
Ch. 1, Nos. 10, 11,

2.1.3 Audiovisuals

The Audiovisuals, representing the various media support materials prepared for this cpurse, consist of one complete set of videotapes, talking books and illustrated bonls, All llis. uI the media have basically the same information content and cover the topics shown on the list below.

The criterianused to determine when an Audiovisual would be prepared for a particular topic was as follows:
a) If the topic concerned the concept of motion, or
b) If the subject matter was rated difficult and the text not sufficiently elaborate, or
c) If material for enrichment did nut appear in the text at all.

All of the Audiovisuals were prepared in order to provide multimedia paths for the student to optimize and individualize his learning process.

The videotapes contain prerecorded illustrated lectures to be inflayed on individual monitors. The average playing time is about fiftern minutes.

The talking book consists of a tape recorded lecture (on ëther open reel or cassette) and an accompanying bookıet containing the illustrations for that lecture.

The illustrated book contains the same lecture material as the taflining book but iws presented without the audio medium. .

A vadembere, tallking book and illustrated book were maparean for emeh of the following topics:

Title

1	Projectile Motion
2	Nawton's First Law
3	Newton's Second Law
4	Newton's Third .Law
5	Atwood's Machine
6	Circular Motion
7	Work Whem Force Varies in Magnitude amd Direction
8	Kinetic Energy
9	Potential Energy
10	Conservation of Energy
11	Movement of Center of Mass
12	Conservation of Momentum
13	Impulse and Momentum
14	Collisions
15	Gravitation
16	Angular Quantities Treated as Vectors
17	Moment of Inertia
18	Rolling Without Slipping
19	Angular Momentum
20	The Gyroscope
21	Simple Harmonic Motion
22	Emergy in SHM
23	Pendulums
24	The Reference Circle
25	Traveling Waves
26	Wave Velocity
27:	Combination of Whaves
28	Standing Waves
29	Beats and the Doppler Effect
30	Reflection and Refraction
31	Huygens' Principile
$32!$	Total Internal Reflection
33	Images by Reflection
34	Images by Thin Lenses:
35	Calculation of E for an Infinite Uniformly Charged Wire
36	Deflection of Electroms in an Electric Eield
. 37	Flux
38	Calcalation of Using Gauss's Law
39	Caparitors
40	The Capacitor in Actimn
41	Kirchihoff's Rules
42	Definition of $\mathrm{X}^{\prime \prime} \mathrm{B}^{\prime \prime}$ Friseld
43	Force Between Parrallel CurrentCarryinn Conductors
44	Ampere's Law Ampilied to a Long Straight Conactor
45	The Law of Biotsavart
46	Faraday's Law off Inductiom

Sequence No.
47

Title

> Motion of an Electron in Combined E and B Fields
> LR Transients
> RC Transients

2.1.4 Texts

The principal text which is issued to each smament is Halliday \& Resnick; Physics for Students of Engineering amd Science. Supplementary reading assignments are to be found int other which are made available during the classroom period. These texts are

Sears and Zemansky, University Physics
Albert Baez, The New College Physics--A Spirral Approach

Shortley and Williams, Elements of Physics:

2.1.5 Instructor

One of the major differences between this comurse and a conventionally taught course is the role of the instructor. The instructor is available during class sessions but does not give: a lecture. His primary function is to assist students with their problems man one-toone basis or to schedule additional assistanse in a tutoriallonmextrainstruction session. This "individualizea" instruction aminean identified weaknesses or needs constitutes one of the basic fauminns upon which the course has been structured.

An average instructor/student ratio of $1=20$ was:
scheduled but varied somewhat in practice because of student cropeouts.
Further description of the instructor*s role issto be found in this report under Section 2.3.2.1, entitled "Notes to the Instructor of Self-Paced Physics."

Certain "demonstration" type lectures were prepared because of the appropriateness of the subject matter. For the first semester these demonstrations covered the following topics:

Linear Momentum
Angular Momentum
Wave Motion

Sound

Geometrical Optics
The second semester covered these topics:
Electrostatics
Electromagnetism
Physical Optics
Polarization

2.1.6 Laboratory Sessions

Two alternative seif-paced laboratory approaches were developed in conjunction with the physics course.

The conventional approach involved twenty (20) experimental set-ups in the laboratory at any one time. Duration of the experiments was planned to range between l-3 hours; however, the experiment need not be completed in one session. Ideally, no more than two students at a time are recommended to participate in an experiment. A complete description of the laboratory procedure and policy is in Section.2.3.2.4 of ther report, including an identification of the twelve (12) experi-r. ments scheduled for the first semester. This conventional lab procedure was dexeloped by the Naval Academy physics staff.

The laboratory progran, in conjunction with the multimedia physics course developed by New York Institute of Technology, consists of fifteen (15) independent study, computer-supported experiments, covering the following topics:

1. Probability and Experimental Errors in Science
2. Permutation and Combination
3. The Direct Measurement of Length
4. Electric Fields
5. Current Balance
6. RC Transients
7. Projectile Motion
8. Graphical Analysis of Data and the Method of Least Squares
9. Collisions
10. Conversion of Linear Momentum
11. Potential
12. The Magnetic Circuic and Hysteresis
13. Measurement of Frequency Response
14. The Inclined Plane
15. Error Analysis

Plus Overview and Sumarj Report, Instructor's Guidelines and Answer Lists.

This program is described in detail in the feparate submission entitled "The Multimedia Labs." $\because: \ddots_{0}$

2.2 Monagement Devices and Controls

The management tools that were designed to operate with the course material while the course is in progress consist of the Study Guide, the Progress Check and the Quarterly Diagnostic. This section more fully describes these items and includes saniple reports.
2.2.1 Study Guides, Progress Checks (including remedial progress checks) and Quarterly Diagnostics

Study Guide

This guide is used in conjunction with the Problem and
Solution Book. Its purpose is to:
a) guide the student through the course segments;
b) provide the student with a mechanism for testing his understanding of the subject matter with immediate feedback;
c) indicate reading and audiovisual assignmenis, and,
d) provide paths for reinforcement and/or remediation.

An intrinsic element. of the self-paced concept, emboried
in the Study Guide, is the mechanism for the student to proceed through the course as fast as, he is able to grasp a thorough understanding oi the subject matter.
: It is recommended that if a student schedules a tutorial, f.e bring with him his completed Study Guides as an additional aid for the instructor to determine the student's problem areas.

An example of a Study Guide page is included in this. section but a full description of its use is to be found in the Student Manual, Section 2.3.2 of this report, Instructor/Student Orientation.

Progress Checks (including Remedial Progress Checks)
The Progress Check is a management devico designed to aid the student as well as the instructor and course manager.

It indicates to the student to what degrec he has achieved a mastery of the Terminal Objectives; it represents the first formal feedback to the instructor in order to evaluate individual student success with the course at an early stage so that he can take corrective action; and it forms the basis for the course manager to judge overall student progress in the course and ascertain problem areas.

When a suxient completes a certain nuber of segments he schedules a Progress Check with his instructor on the material covered. (A full description of the Progress Check procedure is covered in Section 2.4.2.1.2 of this report.)

For the initial half of the fall semester of 1970 , Piugriss Checks were administered on groupings of segments as follows:
a) Segments $1,2,3,4,5$
b) Segments 6, 7, 8, 9, 10
c) Segments $11,12,13,14$

The Progress Check is an "individualized" test in that it consists of ten questions randomly selected from a large bank of test items but is not used for the student's grade. (Refer to Preparation of Progress Checks below.)

The satisfactozy completion of the Progress Check permits the student to continue with the next series of segments.

A student answering correctly 70% or less is given a remedial Progress Check on the particular core questions missed on his
first Progress Check; i.e., the remedial Progress Check contains variations of each item incorrectly answered. The remedial Progress Check is usually scheduled by the student after he has completed appropriate remediation.

If the student answers correctly on 40% or less on the Progress Checks, he schedules a tutorial session with his instructor prior to taking the remedial Progress Check.

Progress Check results are summarized by the Data Management Group and submitted to the course manager for review.

The first page of a sample Progress Check is submitted in this section.

Preparation of Progress Checks

The preparation of Progress Checks, while done manually, is designed to be compatible with a CMI syitem. That is, the questions were coded with unique numericai irsntification and were, for the most part, multiple-choice to facilitate compusiz verification of the manual grading.

The content of each question was determined by reference to the core questions in the Problein and Solution Book and to the Terminal Objectives which the core questions support.

Questions used were of the multiple-choicr, true-false, or completion type.

Five variatmon question were produced, iusually by rearranging numerical parameters within the text of the ques'tion rather than restating the question in completely different language. Although the Progress Checks were not used for midshipmen's grades, and one

Progress Check could have been given to all midshipmen, additional copies were required for midshipmen who scored low enough to require retakes.

The original questions were stored on cards, one card per question. The first Progress Check on each group of segments was limited to ten questions. Tests were prepared by putting several cards in a holder, masking off certain administrative information, and producing a ditto master on a commercial copier. The ditto master then was used to produce the number of copies required. Clerical personnel selected, from the appropriate group of questions and versions, the specific cards that made up a test. A pattern was set up to ensure use of all vexsions of all questions. Questions required for retakes depended on which questions the midshipman missed on this Progress Check. Requests for those questions were passed to the clerical persomne 1 in the form of graded Progress Checks or listings of specific question numbers.

Course policy required 48 hours notice of intent to take Progress Checks, but this lead time appeais genercus for the production system employed.

Time alloted for midshipmen to complete a Progress Check varied with instructor, but was usually 50 minutes. Many midshipmen frequently took longer. Upon completion of the Frogress Check, the instructor, having been provided an answer key, graded the Progress
\because Check and either returned it to the midshipman for review or passed it to clerical personnel for statistical analysis and preparation oi retake Progress Checks.

Cuarteily Diagnostics

At four scheduled class periods during the semester, a Quarterly Diagnostic is administered. Each student section receives an

```
individua`:..rel t. These Diagnostics are used both for grading pur-
poses ant ws st further the instructor in diagnosing any weak areas
of each st achievement. The items thoroughly cover the Terminal
Objectives during the period. Generally, these test items are
created to student's performance on general and specific con-
cepts of plyvsir :omplex mathematical procedures are not emphasized.
Tre diagnostic problem types are categorized as follows:
Hagnostic Problem Types
    *R Recognition of material that should have
    been memorized.
    IJ Conceptual understanding; single concepts
        isolated from problem applications.
    .R Conceptual relationships; recognition and/or
        selection for use in problems but no actual
        solution required.
    At present, all Diagnostic items are multiple-choice
    questions ore pwomym--to facilitate grading. At the next class period;
    each studenut, %revives a personalized "Student T.O. Key Sheet" which irai-
`cates his ssme Eor the test. Also, the test items missed are circled,
and he is fazcted to the particular locations within each segment he
should review.
```

 \(\therefore\)
 (A full description of the Diagnostic procedure is
included in Section 2.4.2.1.3 of this report.)
The results of the Diagnostic form the basis for a complete evaluation of the student and the course effectiveness. Sample summary reports are included in the following section; a complete set of report font to be found in Section 2.4.2.1.3.

Neme \qquad ID \qquad Propess Check (1) Seg 1-5

Section \qquad Date \qquad
Promes ck Score \qquad out of 10 Rerm: Mo.__ Marde \qquad
Digituex \qquad Chartery \qquad

1-1.1 The cmens of the fyure shown weme measured with different instrmentis. The asea should be rxerressed in how many significant fipurse
A. I
B. :
C.
D. 面

1-13.2
A cary mowidg at a constant rate R covers a distance D during a time intermal T. Its rate can beexpressed in
A. mi-ssec
B. sec fatt
C. mini per hr
D. himilft

2.2.2 Sample Management Repurt:

This section contains sampie mizageme reports which reflect actual data. A complete set of mandacment report forms are Included in Section 2.4.2.

The reports shown here ate:
a) Progress Check Sunmery
b) Diagnostics
(1) All Sections--Sime Discribution
(2) 20 Sumary Comparin - ?ercents
(3) TO Sunmary Compavesm-Students
(4) Bar Chart Percentria Mstributions

SAMPLF RF:OCRT (Page 1 :2)
PROGRFSS CHECK -- BUMMAE: MFBORT
Navy PHYSICS - PS2I:
DATE 0 (15
mambe of STUDexTS: $\quad 97$

ERIC

DIHGRESTIC T．O．STMARY CONMERTSON
Secemd Quarterty Diagnostia Test
iNovember 6 axid 7，1Fina

		PERCENT WRONG BI INXTXIDUAL SECTION							PERCENTWRONG BYALL SECTION	
$\begin{aligned} & \text { T.O. } \# \text { (or } \\ & \text { ※ CORE \#) } \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { QUESTION: } \end{gathered}$	07101	0301	0501		080II	≥ 101	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$		
34	34	22	13	5				13		10
35	35	33	17	$-$		11	181	$\begin{array}{r} 13 \\ \hline \end{array}$		24
$3{ }^{6}$	而	II	40	20		22	$\begin{array}{r} 119 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} 1 \quad 33 \\ \hline \end{array}$		24
37	3.7	11		5				$\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$		－ 5
38	38		13	$i 0$		4	$\begin{aligned} & 18 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 11 \\ 1 \\ \hline \end{array}$		27
40	边		33	5		39	$\begin{array}{ll} 1 \\ 1 & 13 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ -120 \\ \hline \end{array}$		20
41	41	39		－		$39:$	$\begin{array}{ll} 1 \\ 1 & 699 \end{array}$	$1-$		31
42	4.2	28	13	IT	$\begin{array}{r} 1 \\ \hline \end{array}$	部	$\begin{aligned} & 11 \\ & \hline \end{aligned}$	$1-$		30
43	43	50	40	玉	$\begin{gathered} 11 \\ 1 \\ \hline \end{gathered}$	6	$\begin{array}{ccc} H & \\ \text { il } & 13 \\ \hline \end{array}$	$\begin{aligned} & 113 \\ & \hline \end{aligned}$		20
46	46	29.	33	25	$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$	[1]	19	$\begin{array}{r} 120 \\ -120 \\ \hline \end{array}$		24
40	47	22	20	45	$!$	I．	$\begin{array}{ll} 1 \\ 1 & 13 \\ \hline \end{array}$	$\begin{aligned} & 147 \\ & \hline \end{aligned}$		26
48	48	12	27	30	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	2 \％	$\begin{array}{ll} \hline 1 & 13 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \hline \\ \hline \end{array}$		26
S45－C7	50	6	$-$					$\begin{array}{r} 1 \\ 1 \\ \hline \end{array}$		1
S45－C8	51			20	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	白	$1=$	17		13
245－C14	52	44	33	5		22		$\begin{array}{r} 1.60 \\ \hline \end{array}$		39
SAStm	53	IIET			1	28	$\begin{array}{rr} 1 \\ 11 & 25 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \hline \end{array}$		29

＊Diagnostic Test Items for Sepments 45 are in of Segrent 45.
diagnostic t.o. sumyary comarisun
Second Quarterly Dfagnostic Test
November 6 and 7, 1970

* Diagnostic Test Items for Segmants 45 are fidentlifled with the Core question of Segment 45.

2.3 Control Points and Orientation

Incorporated in this section is a pictorial description (flow chart) which reflects a general overview of the operational functions of the course. Various control points and lines of communication/responsibility have been identified in the flow chart for the bencfit of the instructor and course manager.

Descriptions which ampiify these items are in the Instructor/ Student Orientation section and other references found throughout this report.

2.3.2 Instructor/Student Orientation

This section contains information which should be reviewed by the instructor to familiarize himself with the course. The descriptions are divided into five parts consisting of:
a) Notes to the Instructor
b) The Management Sequence
(The following three items consist of documentation which is distributed to the students during the orientation session.)
c) Course Policy
d) The Self-Paced Laboratory
e) The Student Manual
2.3.2.1 Notes to the Instructor of Self-Paced Physics

1. Introduction

The methods and operation of the self-paced physics course may seem strange to new instructors as well as to the students This information is presented to assist the instructor in developing nis individual class policies. It is presumed you are familiar with the Student Manual and Course Policy Statement.
2. Objective

The objective of the course is to enable each midchipmañ to complete the tasks defined by the Terminal Objectives (TOs). If you have: not ainne so previously, you should read the TOs, as they constitute the most accurate definition of course content. Because of the way the Problem and Solution books have been constructed, successful completion of all the core questions should cover all the TOs. Since the core questions were also designed to provide a path for fast students, they
are frequently complex problems that combine elements of several TOs. Due to the limited time available for testing, the body of $T O s$ is sampled randomly during Progress Checks and Diagnostic Tests.

3. Class Atmosphere

There are few constraints on how you use class time to move the students through the material. If your class size permits, you are encouraged to usf. Rooil 203 as your regular classroom. Initially; a certain amount of encouragement may be needed to steer the midshipmen to the various media. You should try as many of the media yourself as time permits so you can recommend a particular Audiovisual if a midshipman is having trouble in a specific area. You may wish to add additional demonstrations or conduct small topical lectures occasionally. Comprehensive reviews prior to Diagnostic Tests are frequently given.

4. Student Progress

One of the by-products of the course organization is the early identification of potential failures, before they reach the Diagnostic Tests. This early identification can be done most effectively by careful screening of Study Guide responses and Progress Check responses. The individual prescription for assistance is in your hands, but the early identification of these individuals and the variety of materials available should provide you with consicierable flexibility.
5. Areas of Concern
a. Minimum Lecture. You, as well as some of your midshipmen, may feel uncomfortable, initially, because you are not conducting lectures during most of the class time. Experience has shown that most students adapt readily to the self-paced class routine within
four to six weeks. You may choose to lecture frequently; however, you will probably have little time left to grade Progress Checks or counsel slow students, except in EI (Extra-Instruction) Sessions. Another byproduct of the course organization is to move a substantial amount of student counseling and remedial work into the classroom.
b. Student Progress. Because of the great amount of material covered by the course, you will soon find students dropping well behind the average (or, from your view, a desirable) class progress. Your success in keeping the class moving will be limited only by your imagination. One reason tor the apparently slow class progress may be confusior: between a very weak physics student and a good student who chooses to "pace" himself to the speed of slower classmates. Careful screening of Study Guide and Progress Check responses can usually separate the two.

2.3.2.2 The Management Sequence

1. Each student is issued one prime textbook; at least two other supplementary texts are at all times available in the physics room or in the library.
2. Each student is issued a Student Manual
intended to supply the student with all the procedural information required.
3. Ccurse work begins with the issuance of Segment 1 of Problem and Solution Bookiand the Study Guide for the same segment. The Study Guide is a latent image type on which sequencing infornation is revealed by means of a special pen.
4. The Study Guide features are:
(a) A reading assignment indicating prime reading and \equiv rasmpenentary reading, both clearly identified.
(b) Core problems identified by score lines over and under the problen number.
(c) Remedial loop problems ("enabling problems'). . The instructions for short-circuiting the lonps, of following them, are contained in the Study Guide for each individual set.
(d) Titles amd directions for Information

(e) Titifes and directions for Audiovisuals.

These are averinde in three formats:
(1) Videotapes;
(2) Talking books;
(3) Lllustrated texts
(f) Homework ascignment, generally in the
form of adiditional probizms in the prine text.
5. The Probleni and Solution book features are:
(a) Problems and diagrams in numerical
sequence.
(b) Core problems identified by enclosing each one in a box.
(c) Information Panels preceding care groups.
(d) Scrambled problem solutions: directions for reaching solution is revealed only in the Study Guide when correct answer is chosen.
(e) Each solution for core and core-prime questions is followed by a true-false question whose answer is derivable from the solution to which it pertains. These TF's are answered in special boxed sections of the Study Guide NOTE: Each core problem which is answered incorrectly requires that the student follow the remedial. or enabling loop which always with another problem having the same conceptual basis as the come mindem initially missed. Such problems are called "cure-primes."
(f) The sconblimis mincess used for the solutions is extremely difficult to compravise Thre time required to shom-circuit the response pattern is expmeted foo too great to make it wrorthwhile.
6. The Progress Check. Tnis is a form of test which follows a unit of work. The Progress Check is graded by the tacher. The performance of the student is evaluatted and he is then guided into oise of the channels indicaten bern. To be eligible for the Progress Check, the student must subnit to his instructor all of the relevant revealed Study Guides for that unit.
(a) Using a prefeterminenf cut-off grade, the student is given the "go" signal if his perEormanme is above this level. He is also given a set of enrichment suggestions in the form of reading, programmed material, $\mathrm{films}, \mathrm{etc}$.
(b) If his performance falls below the cut-off, he is given a "stop" signal with remedials, after which he retakes a Progress Check. Questions on these checks will be randomized so that no two students ever take exactly the same examination, nor does the same student take the same check on the second round.
(c) If his performance falls below cut-off on the retake, he will be given individual tutorial assistance and required to take a third test. Disposition of student after the third failure will be left to the chairman of the whanysics committee at the academy.
7. Quarterly Diagnostic Tests. These testas will be carefully generated to test for recognition and recall, understaring of concept, ability to recognize concepts whilich appear in problems, and ability to solve problems. Thess tests will all be aff the multiptechnice variety, wïtlil a respxon mechanism suititable fomir computer grading. The of the Quarterly Diagnstice will replace the mid-term examination and the last of them will be administered about one week before the sṭandard final examination.
8. At the end of each quarter the instructor will submit a diagnosis and recommendations based upon Study Guicie re-. sponses, performance on Progress Checks, and Quarterly Dizagnostics. Possible recommendations include continuation of sequence, metition off specific segments, further, use of other program texts, adional tutorials, and dropping out.
-

2.3.2.3 Sample Course Policy

SP2mis SELF-PACED PHYSICS
Course Policy
I. Backgroumd. This course is part of an experimental education proEram which ithas been conducted by the U.S. Naval Academy and New York Imstittute of Technolory since summer 1967. The course is characterlized by ratiner uncementional teaching methods and, as you will see, emphasiizem:

Each strmdent's proceeding through the course at his omanace.

Use of instruction via texts, programmed problem and solution books, videotapes, audiotape recordings, and instructor consultation.
2. Instructional Methods. A variety of instructional methods will be awailable to you during this course. The large number is provided so fat you can find the combinativam of materials that is most efficient fior you. To be sure of optimizzimg your use of classroom time, you are mpged to try each type material at least twice. The materials avai:able miee:
A. Problem and Solution Book. This book, together with the Sturdy Guide, is the princiipal material. Description and Organfration are contained im the Student Mamal.
B. Audiovisuals (AV's).. These take several forms; you should try all.
(1) Videotapes. Prerecorded lectures on specific topics are shown on the large monitor in Rm 203. The schedule for this monitor is posted on the wall. If you wish to look at a different videotape, you may check one out and play it on the wideotape machines inn Rm 203.
(2) Talking Book (TB). This method consists of a tape recorded lecture (on either open reelor cassette) and a booklet containing the illustrations for the lecture. The TB materials are checked out in Rm 203. Cassettes may be checkedout ovemight.
(3) Illustrated Book. This fis a short illustrated booklet comtainfag the same lecture as the Talking wook, but without the audio porrtion. Note that the subject matter of the Videotames, TB, and Illustrated Book is vintually the same.
C. Alternate Texts. While the prinncipal text for this course is Halliday \& Resnick, Physics for Students of Engineering and Science, collateral text for references are provided on the Study Guides. Copies of all other texts mentioned are available for use during the classroom period. \#ecause of the limited supply, however, they must be returned to the supply room at the conclusion class.
D. Class Instructor. One of the major differences between this course and a conventionally taught course is the role of the instructor. Your regularly assigned instructor will be available during all class sessions to assist you with problems you encounter. He will not be lecturing. You are encouraged to seek help durimg the regular classroom period or during an EI period, if you are having difficulty with the course content or mechanics of the course material.
3. Course Schedule. Every effort has been made for you to determine your own speed in covering course materials. The Progress Checks, which will ba mentiomed later in detail, are taken at the completion of a number of. Problem and Solution Book segments and on a fixed date. Obviously, to complete the course in the sixteen ((176) weeks allowed, some minimum rate of progress must be maintarined. This minimum rate of progress is determined by the Test areas in the following schedule.

TEST/LECTURE SCHEDULE

$9 / 10$	Oct	TEST: SEGMENTS 1-10
$23 / 24$	Oct	LECTURE: LINEAR MOMENTUM
$6 / 7$	Nov	TEST: SEGMENTS Il-45
$13 / 1.4$	Nov	LECTURE: ANGULAR MOMENTUM
$4 / 5$	Dec	TEST: SEGMENTS 46-52
$11 / 12$	Dec	LECTURE: WRAVE MOTION
$16 / 17$	Dec	LECTURE: SQUND
$8 / 9$	Jan	LECTURE: GFOMETRICAL OPTICS
$19 / 20$	Jan	TEST: SEGMENTS 54-62

Progress Checks to be completed after the following segments:
$5,10,18,46,48,52,58,62$
Midshipmen who complete all of the course segments (and appropriate Progress Checks) early will be excused from class early except for tests and lectures noted above.
4. Testing. Two types of testing or evaluation are used in this course.
A. Progress Checks are completed as noted in course schedule. Each midshipman will notify his instructor one period in advance when he wishos to take a Progress Check. Each Check consists of ten questions, similar to those in the Problem and Solution Book, cowering the material since the last progress Check. Fifty minutes per Check will be allowed. The primary purpose of the Progress Check is to identify areas where the student is weak. Although they are scored, the scores are not used in determining course grades. Scoring is as follows:

$$
\begin{array}{ll}
\text { Questions Correct } & \text { Action } \\
8 \text { or more } & \text { Contame with next segment } \\
5-7 & \text { Schedule recheck with instructor } \\
\text { Less than } 5 & \text { Schedule EI period }
\end{array}
$$

In all cases, midsinimmen will be provided references to appropriate course materials for the questinons they miss. The recheck will cover only items missed ome Progress Check and must be scheduled in advance.
B. Diamostic Tests cmivering more matmial than the Progress Checks willl be adminestered as shown class schedule. These tests will be wscm for determinimg progress marks submitted to the registrar. Students who hawe difficulty maintaining the minimum class schedule may flind themselves taikng a test for grade on material for which they have not had a Progress Check. In these cases, the test mill also count as a Progress Check. Midshipmen who manman A average in the four tests will have the test grade comaned as the final exam graide.
5. Laboratory Work. The operation of the se最f-paced laboratory i.s outlined in a separate handout. It is emphasized that completed Experiment Guides represents the work of the midishipman whose name appears on the cover. Material from the laboratrory will be covered on the final examination.
6..: Homework. Homework.problems: assigned in the Study Guide are suppleinentary. Ihey wiil not be collleeted.
7. Grades. Progress and semester grades remain the perogative of the individual instructor and will be based on:

Quarterly Diagnostics
Final Examination Laboratory

Weights assigned to each item will be determined by individual instructors.

2.3.2.4 Sample Procedure Form

UNITED STATES NAVAL ACADEMY
 Physics Department

SP211, Engineering Physics I
First Semester, 1970-1971

> The Self-Paced Laboratory

For the laboratory portion of SP211, Engineering Physics I, you will be allowed to proceed at your own pace through the experiments listed below. Although you have been scheduled for a particular laboratory perfod, you may disregard this and report to the laboratory (Room B8, Michelson 4.1 .1) at any time during the academic day (0755 to 1145 and 1315 to 1505, Monday through Firday, and 0755 to 1145, Saturday). Upon reporting to the instructor on duty in the laboratory, you will be given an Experiment Guide and directed to a laboratory station for the appropriate experiment. On the Experiment Guide, you will record your name and section, your insturctor's name, the date, and the times of arrival and departure. Upon completing the experiment you may leave, but you must give the completed Guide to the laboratory instructor who will, in turn, give it to your instructor. Your work will be graded and returned to you. If you wish, you may complete more than one experiment in a given week; however you will probably find it advisable not to out-pace your classroom assignments. Should you find it impossible to complete the experiment in the time available, make a note to this effect on the Guid= and turn it in to the laboratory instructor before you leave. It will be held in the laboratory so that you may return and finish it later. In any event, you must complete the experiments within the spans of time given in the list below. You must complete all experiments or stand in danger of receiving no credit for the course. All work is to be acconplished individually, but the instructor in the laboratory will answc: questions and try to ensure that you have adequate equipment and thec it is working properly. Laboratory Manuals will be provided at each station, but you should always bring your slide rule, textbook, and a straight edge to the laboratory.

EXPERIMENTS

Number	Title
	Measurementi I
1	Accelcration
2	Measurement II
3	Centripetal Force
4	Inclined Plane
5	Ballistic Pendulum
6	Rotational Inertia
7	Vibrating Snring
8	Speed of Sound in Air
9	Standing Waves
10	Single iens
11	Lens Combinations
12	

Available Beginning	Must be Completed no later than
14 Sep	3 Oct
21 Sep	10 Oct
28 Sep	17 Oct
5 Oct	24 Oct
12 Oct	31 Oct
19 Oct	7 Nov
2 Nov	21 Nov
16 Nov	5 Dec
30 Nov	17 Dec
7 Dec	9 Jan
4 Jan.	15 Jan
4 Jan	20 Jan

I

I
 I

Nat

STLIDENT MANUAL

1. DESCRIPTION OF THE COURSE

The self-paced physics course differs from conventional courses in a number of ways. It is largely student-managed programmed instruction. Most of your learning will be derived from reading carefully selected passages in excellent textbooks, simplified written discussions of the highlights of the various subject areas, and the use of audiovisual aids in ilie form of videotapes, "talking books", and brief, meaty illustrated pamphlets called Illustrated Texts. An instructor will be available for tutorial assistance as well as diagnosis of your progress.

The format of the course permits you to monitor your performance and achievement by means of instant feedback from the visual response mechanism to be described later.

In addition to self-paced theoretical instruction, you will also spend an adequate amount of time in the physics laboratory and attend a demonstration-lecture periodically.

You will al.ways know in advance when a check quiz or an evaluation test is to be given. As a matter of fact, you will determine for yourself when progress checks will be administered to you. In addition tc other periodic tests, a final examination will be used to evaluate your achievement.

2. COURSE STRUCTURE

Assigned reading--From standard textbooks, coded as follows:
HR means Halliday and Resnick, PHYSICS FOR STUDENTS OF SCIENCE AND ENGINEERING, fifth edition, combined form;

SZ means Sears and Zemansky, UNIVERSITY PHYSICS, third edition, complete;

AB means Albert Baez, THE NEN COLLEGE PHYSICS - A SPIRAL APPROACH, first printing;

SW means Shortley and Williams, ELEMENTS OF PHYSICS, fourth edition.

The required or prime reading assignment for each segment of the course will be identified by one or more asterisks before the chapter numbers. The remaining reading is to be considered supplementary. A typical reading assignment and its interpretation will be presented as a sample later in this Manual.

For maximum effectiveness, all assigned reading should be completed before you begin work on the programmed instruction. This first reading need not be exhaustive because it is anticipated that you will return to certain sections of it time and time again as you work through the segment.

Information PaneZs--Asjde from your textbook reading, much of your factual and procedural information will come fron Information Panels presented in the PROBLEM AND SOLU'IIUN booklet for each segment. These Panels are concise discusiions relating to the principles and methods of solution involved in the accompanying problems. If you should find that you do not fully understand the material in the Panel for a given section of your work, you would be expected to return to the textbook assignment for clarification.

Audiovisuals--These are important adjuncts to your reading and problem solving. When you are directed to work with a specified audiovisual, you will usually be given the option of selecting one of three media of presentation.

Videotape: a demonstration accompanied by a discussion that you view on the screen of a small videotape playback;

Talking Book: a set of carefully constructed pictures and diagrins accompanied by an audiotape lecture;

Illustrated Text: a set of pictures similar to those used for the Talking Book accompanied by a formal written discussion matched page by page tos the illustrations.

Progress Checks--groups of relevant questions which you must answer after completing a specified number of segments. These checks wi 1 be used for diagnosis, prcgress evaluation, and tutorial assistance should the latter be needed.

Quarterly Diagnostics--special test forms administered periodically to assist your instructor in diagnosing possible weak areas in your learning pattern, and to enable him to prescribe remedial work where required. The Quarterly Diagnostios will also be used to evaluate your achievement.

Final Excmination--standard exainination which provides information relative to your final grade.

Enrichment Packages--for those students whose progress warrants additional, higher level material; to be a student option.

3. PRINTED LEARNING MATERIALS

PROBLEM AND SOLUTION BOOK. (Hereafter referred to as the P\&S.) This is bound study material containing the work for three or more segments in a volume. The entire course consists of 45 segments for the semester. The P P segments to help you find the one you want quickly. Each P\&S contains:
(a) A problem section in which the questions and numerical problems are presented in stidict numerical orier, to be worked on in sequence.
(b) A solution section in which the correct methods of answering questions and solving problems are presented in scrambled order. Many of these solutions are terminated by additiunal "true-false" questions to be answered immediately after you study the individual solutions.
(c) Jnformation Panels strategically interspersed throughout the problem section.

STUDY GIIILE. This is just what its name implies: a written guide that you must follow step-by-step, strictly in the order presented, to work your way through the problems, information panels, audiovisuals, reading, solutions, and other check points. The remainder of this Manval will be devoted io an explanation of the way in which all these aspects of yoir itearning are related.
4. HOW TO USE THE STUDY GUIDE

Please refer to the sample Study Guide which is the lest page of this booklet. It is a partial mock-up of a segment that doesn't really exist, and will be used for explanation purposes only. If you are to understand how the system works, if you are to avoid blunders when you start work on your first actual segment, you must walk through the following explanation without missing a step. Take your time; be absolutely cer:tain you understanc each maneuver perfectly. If you need help in interpretation, ask for it. . .

Before you begin work on any segment, ascoritain that you have the correct STUDY GUIDE by checking the number near the upper right-hand corner, then complete the heading on each STUDY GUIDE sheet.

Another preliminary step: look at the bottom of the STUDY GUIDE sheet and note the number of pages you should have in your hand. Few STUDY GUIDES contain more than two pages. Be sure you have what you need before you start work.

The letter P above the left column means "Problem Number;" the STEPS are also numbered to indicate the sequence of things you must do other than problem solving.

All right. Let's go through the sample.
Step 0.1 The reading assignment for the segment. The required reading is in Halliday and Resnick, paragraphs 49-3 through 49-6 and paragraph 49-9. The slash-bar (/) always means from one paragraph through the other, inclusive. The supplementary reading is in Sears and 7emansky, paragraphs 45-6, 45-7, and 45-11. This reading should be gone through at least once before continuing.

Step 0.2 When you have finished your reading, turn to the first page in the $P \& S$ for this segment. Read the Information Panel, be sure you understand if.fully, then continue.

This is the first problem in the P\&S. Note the overscore and underscore lines. These indicate that the problem is a core type, required of all students in the course. You will find this problem boxed for the same reason in the P\&S. The problem you find in the P\&S as number 1 is:

How many gallons of regular gasoline could you have purchased with 5 Martian zilches in Septimus, Ohio in the year 1960 and still have some change left over?
A. 1
B. 2
C. 3 -
D. 4

Now qbiviously, to solve this problem you would have to know the price of gasoline per gallon in U.S. currency and also the equivalent buying power of a Martian zilch. Presumably, your reading and the Information Panel contains this information but let us suppose that you didn't do any of the reading and so didn't know the answer. So--you're about to make a wild guess, let's say, answer A.- At this point you rub the "reveal" pen provided all over the inside of box A for the first question. As you do so, you will see an X appear, showing that the selection was incorrect. Do it now; reveal the X in box A with your pen. (Best results are obtained by rubbing the pen lightly over the surface, "then waiting a few moments for the revealed information to darken.)

Making another stab at it, you choose answer B and use the pen bringing out another X. Trying C, you find that the pen reveals the characters 29 [a]. This tells you to turn to page 29, item [a] in the P\&S where you will find the full explanation of the method used to solve the problem. For this core question, you will also find a very short true-falsc question immediately after the correct solution. This question reads as follows:

> A Marc.an zilch is the rquivalent of three U.S. nickels. True or False?

You must now use the reveal pen on either the T-box or the F-box for question 1 .

If you make the correct true-false selection, a V will appear in the box. If you choose incorrectly, an X wizl appear i in the box. The true-false questions are usually so simple that you will be permitted few, if any, errors in this part of the work. Getting one of these T-F's wrong is a pretty sure indication that you are not reading the solutions. You must avoid this.

Let's go down to the next step.
Step l.l Yuu are now being given an option. If your first choice was correct, you will be permitted to skip over the next four questions and advance to the next Information Panel. If you answered incorrectly, even once, you must go through the remedial loop consisting of questions 2 through 5.

We are assuming that you missed question \bar{I}, so let's go through this loop together.

2
Problem 2 in the P\&S. It is not scored, hence it is not a core problem. It reads as follows:

It is predicted that a gallon of regular gasoline :i...................... will sell for $\$ 1.05$ by the year 1998. If this is roughly $3-1 / 2$ times the price of gasoline in 1960, how much did one gallon cost in 1960?

This is not multiple-choice. It's a completion type of question where you must write in the answer. So, write your answer on the line below the rectangle for question 2. The answer is, of course, 30 c because $\$ 1.05$ is $3-1 / 2$
times 30 c. After writing it in, reveal the answer in the rectangle with the pen; the answer 30 c will appear accompanied by the referral page and item $14[\mathrm{c}]$. Turning to the referral, you find the solution worked out for you to check your own thinking. Problems that are not core types are not accompanied by true-false check questions, so you're ready to go to question 3.

Let's interrupt the sequence for a moment. Fven if you were able to answer the original corc qucstion correct ${ }^{1}$.y the first time, you should go through the remedial Zoop anyway if you have any doubt at all aboui the method of solution or the answer. You may have guessed at the right answer, or you may have made two errors that canceled out. In any case, if you feel that your choice of the right answer was a fluke in any way, we urge you to go through the remedial loop.

Problem 3 in the P\&S; it is not a corc problem. Here it is:

Ten Martian zilches will buy exactly the same number of 2-1/2 inch McIntosh apples in a given market on a given day as two U.S. dollars. Thus, one zilch is the equivalent of
A. $10 ¢$
B. $20 ¢$
C. $40 ¢$
D. $60 ¢$

A glance at the STUDY GUIDE corroborates the fact that this is another multiple-choice question. Apparently 10 zilches is the equivalent of $\$ 2.00$, so one zilch must be worth 20 . . This is answer B, so if you use the reveal pen in box B you will bring out the instruction $18[\mathrm{~b}]$ indicating that page 18 , item [b] in the $\mathrm{P} \& S$ has the solution. Whether you were right or wrong, in your selections, it is important that you read and understand the solution. If you had chosen any answer other than B, you would have revealed an X as before. There; is no true-false question, hence you can now go on to question 4.

Here is your first modified true-false question:
True or false? Five martian zilches will purchase more milk than 20 U.S. dimes.
Note the italicized word. Read the statement and (a) if you decide it is truc, simply ink the T-box on the STUDY GUIDE; (b) if you feel that it is false, write a word that can replace more and thereby make the statement true. After you have written the correction word on the line under the F rectangle, then, and only then, you are to reveal the answer with the pen. In this particular instance, the correct answer is "false" and you would write in the rord "Less" in place of more. Your reveal. pen will bring this out, too. If you had selected "true" as your ansior, the pen would have revealed an X inside the T-box. So, after writing "less" you would see revealed: "less (21[d])." At this point in an actual lesson; you would turn to this page and item in the P\&S and read it carefully before continuing the sequence.
Continuing with the remedial loop:
Another multiple-choice question:
In order to have fillea your 18-gallon tank with gasoline in 1960 in Septimus, Ohio, you would have spent at least
A. $\quad 15$ zilches
B. 21 zilches
C. 23 zilches
D. 27 zilches
The correct answer is, of course, 27 zilches since each zilch is worth $20 ¢$ and each gallon costs $30 ¢$, so you would reveal box D and find inside the instruction "27[b]." After reading the solution, you again encounter a check $T-F$ question which is then answered as before by revealing either the T or F box in question 5. Any answer other than D above would have revealed an X just as described for the previous multiple-choice question.
Step 5.1 Everyone is now expected to devote some time to the Information Panel, "The Currency of Venus" and then :
Step 5.2 select the medium he wants for running through the audiovisual, COINAGE AND BILLS OF THE INNER PLANETS.
After that is finished, everyone starts once again on an equal footing with the core question $\underline{\underline{6}}$.
And so forth.

2.4 Information and Data Handling Procedures

A complete definition of the course content is necessary and was accomplished by the identification of over one thousand MBO's. These are to be found in the two volume MBO documentation.

2.4.1 Data Preparation Prior to Course Implementation

 2.4.1.1 Establish Course Structure1. Student Background and Enrollment File - Prepare a student background card for each student to be enrolled in the course. See Exhibit "A" for data and format. Under CMI, there js an allowable maximum of one-hundred and eighty-five students per CMi course.

Purpose - This data registers a student in the course and provides the basis to accomplish the follo:jing:
a) Assignment of Course Student Number
b) Creation of Student Roster
c) Computation of Capability Index
d) Storage of Background Data
2. Preparation of Course Header File - Prepare a course header card (Port-A-Punch format) for each test (or Study Guide) to be administered during the course. See Exhibit "B" for data and format. There is an allowable maximum of 48 questions per test.

Purpose - This data establishes the correct answer matrix for each test to be computer graded and provides certain lesson identification data.
3. Preparation of Question (MBO) Description File -

Prepare a question description card for each question within a test (or Study Guide). See Exhibit "C" for data and format. Following the basic
structure of the course, each question should be designed to test the student's knowledge of a specific Terminal Objective (and Enabling Objective where applicable).

Purpose - This data will be used in the preparation of the individual student performance report (Refer to Exhibit "D") and the $T O$ analysis reports (as described later).

The prescriptions (remedial assignment for a student) for each question should be carefully constructed and will be printed for the student only when the question is answered incorrectly. See AIMS III Systems Minual for more detailed information on these files.

Non-CMI Procedure - If the CMI is not itilized for generating prescriptions, then a TO Key Sheet should be prepared as in Exhibit "E." These sheets are issued subsequent to each Quarterly Diagnostic. Section 4 contains a detailed description of this procedure and tue Progress Check procedure.

2.4.1.2 Data Verification and Updating

Once the data files have been prepared, CMI reports are generated :c reflect what data has been entered into the system. These reports s!lould be reviewed to verify accuracy of the data.

1. Student Background and Enrollment

Prinled reports consist of the Class Roster (Exhibit "F") and Course Backgroumd Roster (Exhibit "G").

The Course Student Number (CSN) is created by the system and is printed on the Class Roster. The CSN is the identifying number to be used subsequently on all student response input data.

To add a student to the file, prepare a student background card as above; to drop a student from the file, prepare a student drop card as in Exhibit "H."
2. Course Header

Certain types of errors input to this file, will automatically be printed by the CMI; however, the temporary (or Permanent) Header File Listing (Exhibit " I ") should be reviewed for completeness and accuracy. The AIMS III User's Manual contains detailed instructions on the method of updating this file.
3. Question (MBO) Description

The Course Structure Sumary Listing (Exhibit "J") provides a line-by-line printout of the MBO descriptions. Review of the listing is necessary to verify all question description data. Additional information is contained in the AIMS III User's Manual.

2.4.2 Course-in-Progress Procedures

2.4.2.1 Student Data

1. Data Preparation

Under CMI, two forms of collecting test data are
possible:
a) Port-a-Punch and
b) Optical scanning form
\therefore See Exhibits "K" and "L" for Port-a-Punch formats and descriptions. See Exhibit " M " for Opscan data.

If, the non-CMI procedure is utilized, the Opscan form is also utilized but as described in Exhibit "N." Note that "completion time" data is an optional data requirement.

2. Progress Check Procedure

Responsibility
STUDENT

INSTRUCTOR

COURSE MANAGER

DATA MANAGEMENT GROUP

Procedure

1. Schedules Progress Check (PC) with instructor upon completion of appropriate segments.
2. Submits Stury Guide to inguezor.
3. Reviews student's Study Guide just pricr to PC.
4. Administers PC to student.
5. Grades PC "on-the-spot."
6. Takes following action:
a) if 40% or less curcect: schedules twandal sessicm ansues remedial

b) if $50-70 \%$: issures remedial material; may reschedule PC.
c) if $80-100 \%$: issues remedial material: and new Study Gaide.

NOTE: Instructor Option:
Examines Study Guide as aid to diagrosis of student weakness; may conduct imanctiate tutorial if warranted.
5. Issues a "filled-in" Study Guide to the student for each one he turns in finaliy.
6. Forwards PC responses to course manager.

1. Forwards graded Progress Check to Data Management Group. Do not include "retakes."
2. Prepares Progress Check worksheet (See following sample.)
3. When approximately 33% of all students have taken the PC, prepares Progress Check-summary report (Sce following sample.)
4. Forwards summary report to course manager.
5. Reviews summary report with instructor.
6. Determines remedial strategy.

SAMPLE PROGRESS CHECK - SUALARY REPORT
PRGGRESS CHECK -- SUMMARY RFPORT

3.	Quarterly Diagnostic Procedure
Responsibility	Procedure
COURSE MANAGER	1. Prepare a randon question Diagnostic for each section, consisting of one question for each TO, drawn from a Multi-Varsion Question Bank.
	2. Prepare sufficient copies of Student $T O$ Key Sheets.
	3. Prepare sufficient copies of each Diagnostic.
	4. Prepare correct answer key.
INSTRUCTORS	1. Administer the Piagnostic.
	2. Forward the Student Diagnostic Answer Sheet to the Data Management Group.
	3. Prepare make-up Diagnostics, administer and grade them.
DATA MANAGEMENI GROUP	1. Sort Diagnostic Answer Sheets into sections. (See following procedures for items 2-5)
	2. Prepare Student TO Key Sheet (one per student) for Diagnostic.
	3. Prepare Diagnostic TO Summary Report for each section.
	4. Prepare Diagnostic Score distribution (Histogram) by section.
	5. Prepare Diagnostic T.O. Summary Comparison Report.
	6. Forward TO Key Sheets and Reports to course manager
COURSE MANAGER	1. Distribute appropriate reports and TO Key S'eets to instructor.
	2. Review Comparison Reports.
INSTRUC'ORS	1. Distribute TO Key Shcets to students.
	2. Review reports to determine remedial strategy.

Procedure for: Marking Student TO Key Sheet and TO Section Summary Worksheet

1. Post student's last name and Academy \# to TO Key Sheet from his Diagnostic Test.
2. Review each Student Diagnostic Test Sheet to determine incorrect answers.
3. a. For each incorrect answer, use cross-reference list to determine appropriate TO; circle that TO on the TO Key Sheet.
b. For each incorrec: answer, post a check mark to the TO Section Summary Worksheel.
4. Count the number of correct answers on each student test sheet and post the \# correct on upper right. corner of his test sheet.
5. When all student tests have been marked as in (1) above, complete the Score Conversion Table as follows:
a. Place a mark in the check box for each student opposite the appropriate "\# Right" line;
b. When all student tests have been checked as abuve, post the total for each line in "Total" column.
6. Draw Bar Chart for section on Score Distribution Form.
7. Post totals from "Total" column to "All Sections" Score Table.
8. When all sections have been posted as in (4) above, add and post totals to "Grand Total" column.
9. Draw Bar Chart for all sections on each Score Distribution Sheet.

SCORE CONVERSTON TABLE

DIAGNOSTIC T.O. SUMMARY REPORT'
SECTION

DIAGNOSTIC T.O. SUMMARY COMIARISON

\qquad

SECTION
-

Total
Students
This Section
Taking Test

ALL SECTIONS

$〕$ SECTION \qquad

2.4.2.1 (Cont'd)

4. Study Guide

For a detailed listing of the multiple responses selected by all students, an item analysis report is available. Under CMI, the report is prepared via the computer and is described is: the AIMS III User's Manual. Descriptions for the course revisions are contained in the Empirical Course Development Model and the Revis:ons Process Documentation.

Under CMI, Study Guide responses are also used in the determination of a student's understanding of a specific TO.

2.4.2.2 Report Descriptions

The non-CMI reports have been described in the preceding sections. The student oriented CMI reports available are briefly described below and are also contained in the AIMS III Systems Manual, and incorporated in this report as:

Exhibit "0"	Individual Student Analysis; student's perperformance on each individual $T O$.
Exhibit "P"	TO Remedial Summary; listing by TO of all students who perforned above the error percentage set for a particular TO.
Exhibit "Q"	Remedial Session Lesson Plan; TOs assigned to a session (and instructor) according to the number of students who performed above the error percentage.
Exhibit "R"	Remedial Session Roster; a listing of students assigned io remedial sessions based on their TO zrror percentsge.
Exhibit "S"	Volume Summary; a iisting of all the total performance for: all students by section.

EXHIBIT "A"

STUDENT BACKGROUND AND ENROLLMENT CARD

Column Number	Heading
$1-25$	Student Name
26-34	Academy Alpha Number
35-37	SAT - Math
38-40	SAT - Verb
52-53	Calculus
54-55	Chemistry
56-58	Math Alchievement
61-63	Rank
64-78	Comments
78-80	Sourse Number (*)

(*) NOTE
If this number is input as zero, the system assigns the student a course number; if not, it considers this card an update.

EXHSBIT "E"

STUDENT TO KEY SHEET
 SEGMENT NUMBER - CORE PROBLEM NUMBER*

*Core Problems Most Closely Keyed to Diagnostic Questions. The TO number circled was answered incorrectly on the Diagnostic

** CLASS ROSTER ***

Column Number
1-20
21-77
$78-80$

Heading
Student Name
B1ank
Student Number

5 Choice Format

PORT-A-PUNCH STUDENT RESPONSE CARD

The student's answer to each question is punched in the shaded column on the card.

Student Response OpScan Form

DATA CONTENT:

Student Name
Data
Social Security Number
Course Number
Completion Time
Volume
Segment
Type
Page Number

The student fills in the answer by marking the appr spriate box (multiple choice) with a dark pencil;

INSTRUCTIONS FOR CONPLE'TING
STUDENT DIAGNOSTIC ANSUER SHEET
(STUDENT RESPONSE)
(Sample attached)

1. Print ame in space provided (last name first).
2. Write date in space provided.
3. Write Academy student number below name.
4. Write Section Number below data.
5. Familiarize yourself with the answer sheet. Record your answers in pencil by placing a mark in the appropriate box. Note that only the first 31 responses apply to this diagnostic.
6. If the multiple-choice answers are A, B, C, D, use box 1 for A; box 2 for B , etc.

7. PERFORMANCE DATA ANALYSIS FOR COURSE REVISION AND OPTTMIZATION

1
1

ERIC

3.1 SYSTEMS DFSCRIPTION

SYSTEM MANUAL

Annapolis Evaluation

I. INTRODUCTION

This document is intended to describe the structure and operation of the Evaluation System gencrated for use with Annapolis data files. The system has been designed to isolate, subject to constraint, desired variable subsets and to perform a wide range of statistical analyses and tests pertinent to evaluations of experimental results.
II. STRUCTURE

The Evaluation system consists of three major components.
Data Files - containing all information generated in the course of the experiment.

Accessing Routine - Program for generating any . constrained subset of data from the files.

Statistical Routine - Permits user selection of desired statistical tests and summaries pertinent to data evaluation.

II. 1 DATA FILES

All information gathered in the course of the experiment is contained in eight master data files. The structure of these files is listed in Table II.1 - II. 8 as well as array dimensions needed to write out the fields and frequency of recording data (See Appendix 1).
II. 2 ACCESSING ROUTINE
II.2.1 OPERATING CAPABILITIES

This segment can be defined as the interface betweon the user, the data files, and the statistical components of the system. Its purpose is to retrieve information from the files to the degree of specification or constraint required by the user. The system is able to:
A. Retrieve the observations stored on any one or more than one requested variable. These requested variables may be of:
i. The same type; i.e., student average confidence for posttest A, for posttest C, and for posttest I--here student average confidence is the variable and there are three variables of the same type requested for each posttest.
ii. Different types; i.e., retrieve averagc student confidence and the average student log confidence for posttest A--here there are two variables, average student confidence and average student log confidence. B. Treat ali constraints on variables sequentially in the order that they are imposed by the user. There are two types of constraints, descriptive constraints and limiting constraints. (Ihe descriptive constraints should be specified first sequentially by the user.)
i. Descriptive constraints are constraints necessary to define the proper subset of the desired variable.
ii. Limiting constraints are necessary for isolating or partitioning the subset of the desired variable; i.e., retrieve the posttest scores of the audiovisual group, for posttest D, for students who scored under 80 for that test and where IQ was in the range of 100 to 130 and whose SAT Math marks were under 100, In this example the variable is posttest scores. There are two descriptive constraints, the group of students (audiovisual) and the particular posttest (posttest D) and three limiting constraints, the actual score for the test (only students who scored less than 80), the students IQ and the SAT Math scores.
C. The maximum number of constraints that can be placed on a particular variable is twenty (20). Any combination of descriptive and limiting constraints which add up to twenty or less will be acceptable.

IT. 2.2 USFR INPUT

The following is a definition of user input required for retrieval of data

X - the quantity X is the variable under consideration, for example, post scores or average student confidences
Z_{i} - where. i can go from 1 to 20. The quantity Z_{i} is the $i^{\text {th }}$ parameter either limiting or descriptive, to be held in constraint in a definition of the group X.
$A_{l i}$ - the lower limit for the i th constraint
$A_{2 i}$ - the upper limit for the $i^{\text {th }}$ constraint such that

$$
A_{1 i} \leq z_{i} \leq A_{2 i}
$$

For each variable, the user must provide a variable definition card containing the numerical value of X and alphanumeric information which will be a definitior of X. For each constraint (limiting or descriptive) to be placed on that variable, the user must provide one card containing the numerical code for the Z_{i} and the upper and lower limits under which Z_{i} will be held, $A_{1 i}$ and $A_{2 i}$ and alphanumeric information descriptive of the constraint. The above definitions are straightforward when the user requests a single set of data. When, however, he wịshes to retrieve more than one group, each group must be separately defined by a variable definition card and a set of constraint cards pertaining to that group.

II. 3. STATISTICAL ROUTINE

II. 3.1 OPERATING CAPABILITIES

It is the purpose of this portion of the system to perform required statistical tasks on the accessed data as sperified by user input. In the performance of these tasks the system will

A - set an output "Flag" if the user requests a listing of the accessed data B - compile a list of statistics (i.e., mean, standard deviation, range, etc.) to be computed in the statistic generation routine. The sources of this list are the direct and indirect commands by the user.
i - The direct commands require a card input by the user identifying each statistic to be computed.
ii - The indirect commands result from the user specification of a statistical test to be performed (i.e., if the user determines that a " t " test should be performed on two sets of data then the means, standard deviations and sample sizes of each of the sets are computed and entered in the call statement for the " t " test subroutine. These three statistics will then be compared to the existing
list of statistics and added to that list as required).

C - Call the statistic generation routine, indicating in the call statement the statistics to be computed and whether or not a listing of the data is requested by the user.

D - Call. each of the requested statistical subroutines, setting in the call statement the magnitude of the statistics which have been computed for that test.
II. 3.2 USER INPUT

There are three types of user input required for the selection routine:
A. A zero-one indication for "no-listing" of the data that is being processed.
B. A list of all statistics to be computed (this is required only for direct statistic specification described above). Table II. 10 contains list of possible statistics that can be computed for a . single variable, and Table II.ll those statistics applicable to two variables.
C. A list of statistical tests to be performed on the accessed data. Table II. 12 contains a list of possible tests, as well as a summary of internal quantities calculated for each test and transmitted to the particular test subroutine.

TABLE II. 10 - STATISTICAL CORIUTATIONS

- SINGLE VARIABLE

```
1 - Count - to count the number observations in a set
2 - Sum of the observations
3-Sum of the squares of the observations
4-Mean value of the set
5 - Variance of the set
6 - Standard deviation of the set
7 - Minimum and maximum values of the set
8 - Range of observations in the set
9 - Ranks of each observation in the set
```

TABLE II. 11 - STATISTICAL CONPUTATIONS
\therefore TWO VARIABLES

1 - Sum of crossproducts of two variables
2 - Correlation coefficient between two variables

TEST DESCRIPTION	STATISTICS TO BE COMPUTED	ADDITIONAL DATA TRANSMTTTED
Student's t Test	Sample size Mean Standard deviation	None
F Test	Sample size Standard deviations	None
One-Way Analysis of Variance	No. of groups to be tested; for each group: sample size sum of observations sum of the squares of observations	
Wilcceen signed Rank Test	Sample size for each group	Set of observations to be tested
Kendall coefficient of concordance	No. of groups Sample size of each group The rank of observations within each group	
Chi-Square Test	No. of groups No. of cells in each group No. of observations in each cell	
Cochran's Test	Sample size Standard deviations	
Least Significant Difference Test	Sample sizes Means Variances	

II. 3.3 STATISTICAL SUBROUTINES

The following part of Section 3 contains the detailed specifications for each of the statistical subroutines listed in Section 3.2. The specification includes required input, computations made within the subroutine, and the output. In addition, a reference text for each statistical test is included.
(1) Student's test

Reference: John E. Freund, Mathematical Statistics, Prentice Hall, 1963.
To test the hypothesis that two sampled means are equal
Input:

- $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ the means for the two samples,
- $\left(\delta_{1}{ }^{2}, \delta_{2}{ }^{2}\right)$ the variances for the two samples, and
- (n_{1}, n_{2}) the number of observations in each of the two samples.

Computations:

- Degrees of freedom of the test $=n_{1}+n_{2}-2$
- The t statistic $=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2}} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

Output:

- The summary statistics (mean, variance, and sample size) for each of the two samples:
- Degrees of freedom of the test.
- The t Statistic.
(2) Ftest - for testing the hypothesis that two variances are equal Reference: Same.

Input:

- $\left(s_{1}{ }^{2}, s_{2}{ }^{2}\right)$ the variances for the two samples, and
- (n_{1}, n_{2}) the number of observations in each of the two samples.

Computations:

- F statistic $=\frac{\operatorname{Maximum}\left(s_{1}{ }^{2}, s_{2}{ }^{2}\right)}{\operatorname{Mininum}\left(s_{1}{ }^{2}, s_{2}{ }^{2}\right)}$
- Degrees of freedom of numerator $=n_{i}-1$, wherc i is equal to one or two, corresponding to which of the two sampled variances is the largest.
- Degrees of freedom of the denominator $=n_{i}-1$, where i corresponds to the smaller of the two.

Output:

- The summary statistics (mean and variance) of the two samples.
- The F statistics.
- The degrees of freedom of the numerator and denominator.
(3) One-way analysis of variance program

Reference: Johnson \& Leone, Statistics and Experimental Design, John Wiley, 1967.

Input: Each of the h vectors to be compared

```
t=1 t=2 m: t*h
```

$$
\begin{aligned}
& 1=1 \\
& i=2
\end{aligned}
$$

x_{11}	x_{21}	\cdots	$x_{h 1}$
x_{12}	x_{22}	\cdots	$x_{h 2}$
\cdot	\cdot		\cdots
\cdots	\cdots		\cdots
$x_{1 n}$	$x_{2 n}$	\cdots	$x_{h n}$

Compute:

$$
\begin{aligned}
& \cdot \bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{h} \text {. where } \bar{x}_{1}=\left[\begin{array}{ll}
n \\
v & x_{1},
\end{array}\right] / n \\
& \cdot S_{1}=\operatorname{SQRT}\left[\begin{array}{c}
n \\
\sum_{i=1}^{n}\left(X_{1 i}-\bar{x}_{1} \cdot\right) / i
\end{array}\right] \\
& \cdot \mathrm{GTI}=\sum_{\mathrm{L}=1}^{\mathrm{h}} \quad \sum_{i=1}^{\mathrm{n}} \quad \mathrm{X}_{\mathrm{ti}}{ }^{2}=\mathrm{X}_{11}{ }^{2}+\mathrm{X}_{12}{ }^{2}+\cdots+\mathrm{X}_{\mathrm{hn}}{ }^{2} \\
& \therefore G=(n h)^{-1}\left[\begin{array}{ccc}
h & n & \\
\sum & \sum_{t i} & X_{t i} \\
t=1 & i=1 &
\end{array}{ }^{2}\right. \\
& \text { - } \mathbf{G T}=(\mathrm{n})^{-1}\left[\begin{array}{ccc}
\mathrm{h} & \mathrm{n} & \\
\Sigma & \Sigma & X_{t i} \\
t=1 & i=1 &
\end{array}{ }^{2}\right. \\
& (n)^{-1}\left[\left(X_{11}+X_{12}+\cdots+X_{1 n}\right)^{2}+\cdots+\left(X_{h 1}+\cdots+X_{h n}\right)^{2}\right]
\end{aligned}
$$

Output:

- Listing of data in colums, listing of mean and standard deviation of each column at the bottom of each column.
- Table of the analysis of variance as follows:

One-Way Analysis of Varlance of the Measured Parameter

| Source | Sum of
 Squares | Degrees
 Freedom | Mean
 Square |
| :--- | :---: | :---: | :---: | | F-Ratio |
| :--- |
| Total |
| Between Groups |
| With-G |
| WT-G |

(4) The chi-square test - for K independent samples

Reference: Siegel, Non-Parametric Statistics, McGraw-Hill, 1.956.

Input:
$K=$ No. of columns (no. of independent samples)
$R=$ No. of rows (no. of categories)
$X=a K R$ matrix with elements
$\left[X_{i j}\right]=$ No. of observations falling into the $i^{\text {th }}$ category of the $j^{\text {th }}$ sample NOTF: $X_{i j}$ is also $:$ alled the observed frequency per cell

Compute:

- Degrees of fredom $=(R-1)(K-1)$
- Each row sum $R S_{i}=\sum_{j=1}^{K} X_{i j}$
- Each column sum $\quad C S_{j}=\begin{aligned} & \sum_{i}=1\end{aligned} \quad X_{i j}$
- Sum of all rows or columns

$$
T S=\begin{aligned}
& \sum_{i=1}^{R}
\end{aligned} \quad \mathrm{RS}_{\mathbf{i}}=\begin{gathered}
K \\
j=1
\end{gathered} \quad C S_{j}=\begin{gathered}
R \\
i=1
\end{gathered} \sum_{j=1}^{K} \quad X_{i j}
$$

- Compute expected frequency per cell ($\underline{E}_{i j}$)

$$
E_{i j}=\frac{\left(R S_{i}\right)\left(C S_{j}\right)}{T S}
$$

- Compute the chi-squareme statistic

$$
x^{2}=\sum_{i=1}^{R} \quad \begin{aligned}
& K \\
& \sum=1
\end{aligned} \frac{\left(L_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

Output:

No. of independent samples (K)
No. of categories per sample (R)
Degrees of freedom
Chi-square test.statistic
(5) Kenda11 coefficient of concordance - to compute the concordance (agreement) between K rankings of a set of information Reference: Siegel, Non-Parametric Statistics, McGraw-Hill, 1956. Input:

X-matrix - which can ' \because : a set of K vectors of obscrvations or ranks of observations. The numb: of observations in each vector must be equal. $N=$ No. of subjects ranked $K=$ No. of different rankings

NOTE: The numerical value of the elements will probably be something other than ranks (i.e., test scores).

Computations:
Convert each of the column vectors into a column vector of ranks; i.e., if. $X_{i j}$ ($i^{\text {th }}$ element (row) in the $j^{\text {th }}$ column) is the minimum value in that colum, then it is assigned a rant, $r_{i j}=1$.

If $X_{i j}$ is the maimum value in the column, then it isassigned a rank, $\mathbf{r}_{\mathrm{ij}}=\mathrm{N}$.

The remaining rumines for ranking and for settling ties are exactly the same as for the $\overline{\text { minin }}$ lcoxen signed rank test.

NOTE: Each colmm must be ranked independently of the other columns.
The resulting madurix (noted R) is

Where $r_{i j}$ is the rank of $X_{i j}$ - the rank of the $i^{\text {th }}$ element in the $j^{\text {th }}$ column.

Compute:

$\mathrm{P}_{i}=\sum_{j=1}^{K} r_{i j}$.
$\Lambda_{i}=R_{i}-\frac{\stackrel{N}{N}_{N}^{N}}{N} R_{i}$ and $\left(\Delta_{i}\right)^{2}$
Compute:
$T_{j}=\frac{\Sigma\left(t^{3}-t\right)}{12}$
$t=$ no. of observations in a group tied for a given rank. The computation of T_{j} is best explained through an example:

$R=$| | $j=1$ | $j=2$ | $j-3=k$ |
| :---: | :---: | :---: | :---: |
| $i=1$ | 1 | 2.5 | 2 |
| 2 | 4.5 | 1 | 1 |
| 3 | 2 | 2.5 | 4.5 |
| 4 | 4.5 | 4.5 | 4.5 |
| 5 | 3 | 4.5 | 4.5 |
| 7 | 7.5 | 8 | 4.5 |
| 7 | 6 | 9 | 8 |
| 9 | 7.5 | 10 | 8 |
| 10 | 10 | 6.5 | 10 |

For $\mathfrak{j}=1$ there are two sets of rank ties, each containing two ties, i.e., $2-4.5^{\prime} \mathrm{s}$

$$
2-7.5^{\prime} \mathrm{s}
$$

Therefore, $\mathrm{T}_{1}=\frac{\left(2^{3}-2\right)+\left(2^{3}-2\right)}{12}=1$

For $j=2$ are three sets of rank ties, i.e.,

$$
\begin{aligned}
& \mathbb{Z}-2.5^{\prime} \mathrm{s} \\
& 2-4.5^{\prime} \mathrm{s} \\
& 2-6.5^{\prime} \mathrm{s}
\end{aligned}
$$

Therefore, $T_{2}=\frac{\left(2^{3}-2\right)+\left(2^{3}-2\right)+\left(2^{3}-2\right)}{12}=1.5$

$$
\begin{aligned}
& 4-4.5^{\prime} \mathrm{s} \\
& =-88^{\prime} \mathrm{s}
\end{aligned}
$$

Therefore $\operatorname{TI}_{3}=\frac{\left(4^{3}-4\right)+\left(3^{3}-3\right)}{12}=7$

- Compute: $\underset{j=1}{\frac{\text { 还 }}{j}} \mathrm{~T}_{\mathrm{j}}$

- Kendallatrank cofoficient of concordance

- The test atafietic is the chi-square
chi-sumin estatistic (C) $=K(\mathbb{N}-1) W$
degrex: Eneedtom (DF) $=N-1$
Output
- Alphabenimescrifation of the data
- Listimex cintic inquat matrix X
- Listing $\underset{\sim}{ }=$ finar matrix R and the computations R_{i}, Δ_{i}, and T_{j}

	$j=1$	2	3	. \cdot	K	R_{i}	Δ_{i}
$i=1$	${ }^{1} 11$	r_{12}	${ }^{1} 13$...	$\mathrm{r}_{1 \mathrm{~K}}$	R_{1}	Δ_{1}
2	${ }^{21}$				-	-	-
-	-				-	-	-
-	-				-	-	-
N	${ }^{\mathrm{N} 1}$	-	-		r_{NK}	R_{N}	Δ_{N}
T_{j}	T_{1}	T_{2}			T_{K}		

- Kendall rank coefficient of concordance (W) .
- Chi-square test statistic (C)
- Degrees of freedom (DF)
(6) Wilcoxen matched pairs signed rank test

Reference: Siege1, Non-Parametric Statistics.
Input:
Two vectors (sets) of numbers:

Computations:

Set A	Set
x_{11}	$\mathrm{X}_{2 \text { I }}$
x_{12}	X_{22}
-	-
-	-
$\mathrm{x}_{1 \mathrm{n} 1}$	$\mathrm{x}_{2 \mathrm{~m}}$

Count the number of items in each set,
$n_{1}=n o$. in Set $A ; n_{2}=n o$. in Set B.
NOTE: If $n_{1}=n_{2}$ set $n_{1}=N^{\prime}$
If $n_{1} \neq n_{2}$, terminate the subroutine wirin the following message and output:

ERROR MESSAGE: "SAMPLES A AND B ARE NOT OF EQUAL LENGTH - WILCOXEN SIGNED RANK TEST REQUIRES A COMPLETE SET OF MATCHED PAIRS OF DATA"

- Compute the differences $\left(d_{i}\right)$ - where $d_{i}=X_{1 i}-X_{2 i}$
- Compute the absolute value of differences $\left|d_{i}\right|$
- Numerically order the $\left|d_{i}\right|$ by magnitude
- Compute dumny ranks by assigning 0 when $\left|d_{i}\right|=0$ and by assigning the nunerical count to the remaining ordered $\left|d_{i}\right|>0$
- Compute actual ranks vim the following rules:
- If $\left|\mathrm{d}_{\mathrm{i}}\right|=0 ;$ rank $=0^{\circ}$
- If $\left|d_{i}\right| \neq\left|d_{i}-1\right| \operatorname{man}\left|d_{i}\right| \neq\left|d_{i}+1\right| ; \quad$ rank $=$ dumny rank
- $\equiv\left|\mathrm{d}_{\mathrm{i}}\right|=\left|\mathrm{d}_{\mathrm{i}}-1\right|$ or $\left|\mathrm{d}_{\mathrm{i}}\right|=\left|\mathrm{d}_{\mathrm{i}}+1\right|$ or both, count the numiber of d_{i} 's that are equal to B, sum over the associated diumy ranks:, then
actormil rank $=\frac{\text { sum over dumny ranks }}{B}$
(see examples: A and B on previons page)
- Signed manks - msociate the sign of the original difference (plus or minus) to the actual Ianks
- Sum up the positive ramks $=T_{1}$
- Sum up the negative ranks $=T_{2}$
- Determime $T=$ minimum $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$
- Determine $N=N^{\prime}$ - number of pairs having azero difference
- Computer $\mu_{T}=\frac{N(N+1)}{4}$

$$
\begin{aligned}
& \sigma_{T}=\frac{N(N+1)(2 N+1)}{24} \\
& Z=\frac{T-\mu_{T}}{\sigma T}
\end{aligned}
$$

Output:

- List of the two input vectors X_{1} and X_{2}
- The sample size for each vector
- Wilcoxen Signed Rank Test
- Data table:

Set A	Set B	Differ- ences	Ranks	Signed Ranks
X_{11}	X_{21}	$\mathrm{~d}_{1}$	r_{1}	$\pm \mathrm{r}_{1}$
X_{12}	X_{22}	$\mathrm{~d}_{2}$	r_{2}	
.	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	-	\cdot	\cdot	\cdot
$\mathrm{X}_{1 \mathrm{~N}}$	$\mathrm{X}_{2 \mathrm{~N}}$	$\mathrm{~d}_{\mathrm{N}}$	r_{N}	$\pm \mathrm{r}_{\mathrm{N}}$

-, Number of pairs (N')

- Number of pairs with zemio difference
- Test sample size (N)
- Sum of positive ranks (\mathbb{T}_{1})
- Sum of negative ranks (T_{2})
- Small sample size test statistic (for cases when ≤ 25)
- Wilcoxen test statiṣtic (T)
- Large sample size test statistic (N > 25)
- Meane ($\mu_{\mathbf{T}}$)
- Standard deviation ($\dot{\sigma}_{\mathrm{T}}$)
- Normal approximation - Wilcoxen test statistic (Z)
(7) Cochran's Test - to compare K variances for homogencity.

Reference: Statistics akd fixperimental Design, Johnson \& Leone, Wiley 1957.

The test the hyprothesis that K sampiled variances are estimates of the
sepepulations varianoe.

Input:

- $\left(S_{1}, S_{2}, \ldots, S_{K}\right)$ - the stolard deviations fo math of the

K samples

- $\left(n_{1}, n_{2}, \ldots, n_{K}\right)$ - the sample sizes for each of the K samples

Computations:

- Compare K sample sizes for equality.

$$
n_{1}=n_{2}=\ldots=n_{K}=N
$$

- Degrees of freedom $=N$ - 1
- Cochran test statistic

$$
\begin{gathered}
C=\frac{\operatorname{MAXLMUM} S_{t}}{K} \\
\sum_{t}^{=} S_{t}
\end{gathered}
$$

Output:

- Sumnary statistics, sample size and standard deviations for eacti of the K samples
- The Cochran test statistic.
(8) Least Significant Difference Test - to compare K means for equality Reference: Expecimental Statistics, M.G. Natrella, AMCP 706-110.

Input:

- $\left(S_{1}{ }^{2}, S_{2}{ }^{2}, \ldots, S_{K}{ }^{2}\right)$ - the variances for each of the K samples
- $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{X}_{K}\right)$ - the means for each of the K samples
- (n_{1}, n_{2}, n_{K}) - the samples sizes for each of the K samples Computations:
- pooled variance $\mathrm{S}_{\mathrm{e}}{ }^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}{ }^{2}+\ldots+\left(\mathrm{m}_{\mathrm{g}}-1\right) \mathrm{S}_{\mathrm{K}}{ }^{2}}{\left(\mathrm{n}_{1}+\ldots+m_{K}\right)-K}$
- harmonic sample size $\pi_{\# \#}=\frac{K}{\left(1 / n_{1}+\ldots+1 / n_{K K}\right)}$
- degrees of frenatiom $w=\sum_{i:=1}^{K}\left(n_{i}-1\right)$
$\mathbf{w}=$ maximum difference $t a t w e e n$ any two of the K means
$q=$ maximum difference converted to units of the standardized range statistic

$$
q=\frac{\sqrt{n_{H}} \times w}{S_{e}}
$$

Out:put:

- Summary statistics including $\mathrm{S}_{\mathrm{e}}{ }^{2}, \mathrm{n}_{\mathrm{ll}}, v, \mathrm{w}$, and q .
- Table of differences between means.

QUANTITY
SS No.
LENGTH

Acad. Id. No.
4

DIMENSION

*Stud. Name 16 1

Group No. 1 1

Sect. No. 2
SAT Math 2
1
SAT Verbal 2
CEEB Math 2
CEEB Verbal 2
Rank 2
1
Sec. Sem. Qpr. 2
1
Thrd. Sem. Qpr.
2
1

One Such Record Per Student.
*This field is EBCDIC (the only non-binary field in all 8 files).

This is a continuation of the first file.

One Such Record Per Student.

LENGTH

2
J.

2
Vol.
No. Ques.
Corr/Inc.
Conf.
Log Conf.
Diff.
Tot. Corr.
Avg. Conf.
Avg. Log Conf. 2

Avg. Diff.

Sort Stud. Id., Vol.

One Such Record Per Volume Per Student.
Stud. Id. 2
Group No. 1
Sect: No. 2
Vol. 1

No. Ques. 2
Corr/Inc.
Conf. 2
20
.
Log Conf. . 2
20

Diff. 2
Dif. . 2
Tot. Corr. . 2
Avg. Conf. 2
Avg. Log Conf. 2
Avg. Diff. 2

Sort by Stud. Id., Vol.

One Such Record Per Volume Per Student

QUANTITY

Stud. Id.
Group No.
Sect. No.
Corr/Inc.
Tot. Corr. 1
Tot. Corr. 2
Tot. Corr. 3
Tot. Corr. 4
Tot. Corr.

Sort by Stud. Id.
Vo. 1
Div. Nos. 2

No Yes 2
$\begin{array}{lll}\text { Term Obj. } & 20\end{array}$
Item Class 20
Cocc/prin 2
20

Sort by Vol., the :

One Such Recond Sid Question Per. Volume.

$$
\text { TABLE II. } 6 \text { - MATESLAL RA: }: O \text { I }
$$

Vion	1	
Di...	2	3
wai.	2	
UTTm: ${ }^{\text {a }}$	2	20
Lexsmass	2	20
Sarre preir	2	20
OREa.	2	
Stimg Eiff.	2	
dry. Scozeng 1	2	20
	2	20
	2	20
W. Smorich 7	2	20
No. icoring conc.	2	20
No. Sexoring To	2	20

Suate by Vol., Div. No.

One Sucir Record Per Question Per Volume.

No. Ques.
2
Term. Obj. 2
Ques. Type 2
Sub Id. 2
2
Fac Mth $\quad 2 \quad 60$
Fac Conc.
No Scor. $\quad 60$
\cdots
60
60

Sort by Tecm, 0bis

Ore Such Record Per Duestion Per Votume.

Stud. Id.
(Acad. No.) 2
Group No.
1
Week No.
2
Stud. Time
2
Mean Time 2
Overall Time 2

Sort by Stud. Id., Week, Group No.

One Such Record Per Volume.

ARNATGLE EVALUATION SYCTE
 VOI - - - MSER'S MANEAT

I. INITRODUCTION

This document is intandee to provide the in for the preparation of imput to the Ammapol- Exaluation System. For a description of the contents of \because system as well as a description of the nature of the tests Envonved, consult the "System ManuaI - Anmapolis Evaluatior."
II. USER INPUT SPECIFICATTH

A complete user input specification consisms of two fundamenta: input data blocks.

Accessing Input - needed to define the comstraned data subset to be used fior evaluation.

Statinstical Input - needed to defime the statistics and or tessts to be performed.

IT. ${ }^{\text {ACCESSING INPUT }}$,
Accessing input consists of naming the desired wariable as well
as specifying the comistraints which serve to define the data subset. Far each comsurant a separate Eand mang be submizuted. There is an altrownte maxinmum of 20 different cranstraints int each vector oí output dinta.

The first of ach sett conditions is themment variable and each successive card ailefines one constrant. The farmat iss follows:

File	Co．$n m n s:$	1
AC	\ddots	$3-4$
Dimension 1	$"$	$6-7$
Dimersion 2	$"$	$9-10$
Minimm	$"$	$12-14$
Maximum	$"$	$16-18$
Volume	$"$	$20-21$

Hinct File，AC，Dimens I，and Dimensin 2 are described on the frollowing pages．

Mimimums and maximums ：re the lower ar：：pper bounds desired面y 酯e mer．The compurs will use the mintmum as the lower bound and the maximum as the upper bound（i．e．，they will be usax in the test，and i 开 one is hit，the texs will be consid－ ereut successful）．Volıum selection goes žn l－I5 covering volinmes A through 0 ．

If an alphaibetic charencer is wanted as either an upper or Iower bound，its earmivalent number must be usad where $A=1$ ，

 In the fille postition end Ieave the rest of whe card blank．
 minale mumber of cestrs（iine．，20）．

The fiollowimp timges give the File，$A C, D$ imension 1 ，and Dimen－
 tifure partincular fielld eannot be used in a test．

MORE I：The input cantien masm be fin sequerace order，ascending accorring to the filew（1，f－s fost，all the tests for file 1 ，
 maditad variable regardliess of what file it is contained in（i．e．， this card is not inmoluded in the aforementisened sequence）．

NOTE 2: For a given rari thle constraimts can be defined on either files $1-6$ or - (material rating files), bat mot both.

1	File	AC.	Dim I	Dim 2	Field
	1	1			SS Number
1	1	2			Academy Number (Id.)
	1	-			Student Name
	1	4			Group Number
7	1	5			Section Nimber
	1	6			SAT Math
!	1	7			SAT Verbal
	1	8			CEEB Math
	1	9			CEES Verbal
-	1	10			Rank in Class
	1	11.			Second S Semester Qpr
	1	12			Thimid Semmester Qpr
	1	-1	1		OSPE :IIT
,	1	-1	2		OSPE \%
4	1	-1	3		OSPE \#3
	1	-1	4		OSPE 非4
1	1	-2	1-65,		Strong Scores (1 - 65)
T	1	-3	1.- 16		Edwards: Personnel Preference (\#'s I - 16)
\%	1	13			Physics Validiation Test Results

COMMENT:
This record occurs ance per studfent and in sorted by student Id.

Fiie	AC	Dim 1	Dim 2	Field
2	1			Student Id
2	2			Group Number
2	3			Section Number
2	4			Vol ume
2	5			Number Questions
2	-1	*1-24	1	Correct/Incorrect
2	-1	*1-24	2	Confidence
2	-1	*1-24	3	Log Confidence
2	-1	*1-24	4	Difficulty
2	6			Total Number Correct
2	7			Average Confidence
2	8			Average Log Confidence
2	9			Average Difficulty
*This corresponds to the question number since these four fields				

COMMENT:
This record occurs once per question and is sorted by Student Id., Volume.

File	AC	Dim 1	Dim 2	Ficld
3	1			Student Id.
3	2			Group Number
3	3			Section Number
3	4			Volume
3	5			Number Questions
3	-1	*1 - 24	1	Correct/Incorrect
3	-1	*1-24	2	Confidence
3	-1	*1-24	3	Log Confidence
3	-1	*1-24	4	Difficulty
3	6			Total Number Correct
3	7			Average Confidence
3	8			Average Log Confidence
3	9			Average Difficulty
*This corresponds to the question number since these four fields occur for each question.				

COMMENT:
This record occurs once per question and is sorted by Student Id., Volume.

File	AC	Dim1	Fim 2	Volume
5	1		Division Numbers	
5	-1	$1-3$		Number of Questions
5	2		Question Number	
5	-2	1	Form	
5	\ldots	-2	2	Terminal Objective
5	-2	3	Item Classification	
5	-2	4	Concept/Principle Code	

COMPENT:
This record occurs once per question and is sorted by Question \#, Volume, Form.

	File	AC	Di.n 1	Dim 2	Ficld
	7	1			Number of Questions
	7	-1	1		Question Number
	7	-1	2		Terminal Objective
,	7	-1	3		Question Type
	7	-1	4		Subtest Id.
\%	7	-1	5		Correct Answer
	7	-2	*1-7		Faculty Math Difficulty
	7	-3	*1-7		Faculty Math Concepts
	7	2			Number Scoring Inappropriate for TO

*This corresponds to the 7 categories.

COMMENT:
This record occurs once per question and is sorted by Question number.

File	AC	Dim 1.	Fim 2	
8	1			Student Id.
8	2		Group Number	
8	3		Weck Number	
8	4		Student Time	
8	5		Mean Time	
8	6		Overall Time	

COMMENT:
This record occurs once per week and is sorted by Student Id, week.

Statistical input consists of selecting the desired tests and computations to be performed on the accessed data as well as naming the accessed variables to be used in each test.

The following contains the detailed instiuctions for use of the statistical package including a list of all required and optional data cards, variable definition, and card format.

MOTE: If the statistical generation routine is called, all sf the single variable computations will be made, except for ranking and sorting. If the user desires ranking and sorting for each vector, he must set $\operatorname{ICODE1}=1$ in card (4).

NOTE: Data cards 2 and 3 will be included only when inputed from cards.

NOTE: If a statistical test requires the comyunturim of summary statistics, and IND $\neq 0003$, the control progn will set IND $=0003$.

NOTE: Card No. 5 is optional. It is only required if INDICl $\neq 0$.

Card No.	Required	Cols.	Format	Variable Name	Variable Description
	YES	$7-8$	I2	NVEC2	The number of the second vector to be tested for statistical routines ($40 \& 41$). This ficld is blank for all of the other statistical test routines (42-47).
7	OPTHONAL	$\Delta=80$	2014	NAME	User supplied description of variables (vectors) being tested within a particular test routine

NOTE: The descriptison is optional; a blank card must be substituted if user decides not to use the description option.

NOIE: If statistical test routines 40 or 41 are specified; do not incliwde control card 8 or 9.

NOEE: Control card 9 is only required for statistical test routine 45 (Chi Square test). This card provides the user with option of defining the cell size for the Chi Square test or the option of selecting the number of cells to be used in amilysis.
9

1
II L
$=1$ If the user desires to define the limits for each cell (define the cell size).
$=2$ If the user does not define the limits for each cell.

$\begin{aligned} & \text { Card } \\ & \text { No. } \end{aligned}$	Required	Colls.	Forn	Variab Tame	Variable Description
		3-4	12	:	The number of cells to be used in the Chi Square analysis. If $\mathrm{LL}=1, \mathrm{~K}$ must be specified. Jf $\mathrm{LL}=2$, K need not be specified (sec Chi Square notc at end of this table.
		$5-10$ $11-16$	F6. 0 F6.	$\operatorname{LI}(1,1)$ $\operatorname{LI}(1,2)$	Lower limit for the first cell if LI $(1,1)=99999$. The lower limit for the first cell $=-00$
		$\frac{(12 \mathrm{~K}-2)}{(12 \mathrm{~K}+4)}-$	F6.0	LI (K, 2)	Upper limit for the K^{th} cell (interval), if LII (K. 2) $=99999$. The mpper limit for the Fth interval is set tio +00 .

NOTE: On Chi Square card, fif the user selects $L \mathbb{L}=2$ and sets $K=0$, then the program will assume six cells for the chi Square analysis by selecting the minimum (MIN) and maximum (MAX) observations from all of the observations available (under analysis) and define the cell width.

$$
\Delta=\frac{M A X-M I N}{6!}
$$

and define each of the six cells as follows:

Cell 1		- Cenz 2			Cell 6	
Lower Limit	Upper Limit	Lower Limit	Upper Limit	\ldots	Lower Limit	Upper Limit
MIN	MIN+ \triangle	MIN+ ${ }^{\text {d }}$	MIN $+2 \Delta$		$\begin{aligned} & \text { MIN+5 }= \\ & = \\ & \text { MAX- } \Delta \end{aligned}$	MAX

If the user selects $L L=2$ and specifies k (the number of cells) as some integer I then the cell. width Δ will be defined in a like mamer.

$$
\Delta=\frac{M A X-M I N}{I}
$$

and each of the I cells will be defined as follows:

Cell 1			Ce11 1	
Lower I,imit	Upper Limit	-••	Lower Limit	以pper: Limit
MIN	MIN+ \triangle		MAX- ${ }^{\text {a }}$	MAX

Example Set of Control Cards
Test case given 10 vectors of data $(J=1, \ldots, 10)$ each of size $\operatorname{IR}(J)$:

1. Compute summary statistics and Hirst.
2. Compute correlation for vectar sets (1 and 2). (3 and 4), (5 and 6), (7 and 8), (9 and 10).
3. Perform t-test om vectors 2 and 4.
4. Perform Kendall Coefficient of Cimincordance on vectors 1, 3, 5, and 9.
5. Perform Chi Square [with 8 unspecäfied intervais (ceells)] for all 10 vectors.
6. Chi Square test (same vectors with 3 specified intervals (0,10) $(10,40)(40,00)$.

A coding sheet is attached with the 16 control caxds necessary to perform the above analysis.

NOTE: Control (data) cards 2 and 3 for the number of observations in each vector have not been included.
$\sim B M$
fortran Coding Form

\square

ANNAPOLIS EVALUATION SYSTEM

VOL. 4 - SUPPLEMENTARY WORK - ITEM ANALYSIS, FAPG
I. INTRODUCTION

In the course of the Annapolis experiment, programs were generated to perform specific evaluative tasks not included in the mainline system (Annapolis Evaluation, Vols. 1, 2, and 3). It is the purpose of this document to describe the nature and use of these programs, the Item Analysis Program, and PMPG (Percentage Maximum Possible Gain) Program.
II. ITEM ANALYSIS

II. 1 Program Description

The progran performs the following analyses for student response data: a) for all students or keyed groups of students, and b) on all of the test questions or any keyed subset of questions.
A. Summary Statistics:

1. Counts the number of students taking the test.
2. Computes the raw score (no. of items correct) for each student. The raw score is computed based on the number of keyed items.
3. Computes the average raw score for all students (test average).
4. Computes the standard deviation of student scores.
B. Item Statistics (for each keyod item):
5. Computes the frequency and percontage of the upper 50% of students' responses for each category of response.

Categories of Response
Fill-in questions $\quad X$ - Correct
$\dot{0}$ - Incorrect

M - Blank
Multiple-choice questions
$\left.\begin{array}{l}\text { A } \\ \text { B } \\ \text { C } \\ \text { D } \\ \text { E }\end{array}\right\}$
M - Blank
2. Computes the frequency and percentage of lower: 50% students for each category of response.
3. Computes the frequency and percentage over all students for each category of response.
4. Computes the difference in percentage between upper and lower students for each category of response.
5. Computes the average raw score for students who answered the question correctly ($A C$).
6. Computes the average raw score for students who answered the question incorrectly (AIC)
7. Computes the proportion of students who answered the question correctly (PPS).
8. Computes the item (question) standard deviation $S=[(\mathrm{PPS})(1.0-\mathrm{PPS})]^{1 / 2}$
9. Compute the point biserial correlation
$P B C=(A C-A T C) \frac{S}{\text { Test stanciard } \& \text { deviation }}$

Additional computations and processing:

1. Computes the Kuder-Richardson reliability (KR2O)
$\operatorname{KR2O} \frac{\mathrm{N}}{\mathrm{N}-1.0} \cdot \frac{(\mathrm{SS})^{2}-\mathrm{SSI}}{(\mathrm{SS})^{2}}$
$N=$ number of keyed items.
Where : $S S=$ test standard deviation
$S S I=\Sigma(P P S)(1.0-P P S)$
2. Sorts the proportion passing for each keyed item into ascending order.
3. Sorts the point biserial correlation for each keyed item into ascending order.
4. Sorts all participating students into descending order by grade.

II. 2 Program Use

The item analysis program was developed specifically for analysis of the Final Examination. The program via user control cards can perform an item analysis on any subset of keyed questions for all students or for groups of students. The program was written in Fortran \mathbb{N} for use on the IBM 360/65 under OS. The control and data cards for analysis of the Final Exain are as follows :

NOTE: After the last student card, a card with zero's in Columns 7-10 is required to indicate that the last student has been processed.

$1-2$	The number of questions to be analyzed
$5-6$	The number of class sections to be
	included in the analysis.

NOTE: If all students are to be included in the analysis columns, 5-6 should be left blank.
$5 \quad 1-2$
3-4
.
.
-

The first question to be analyzed.
The second question to be analyzed.

NOTE: If all the question on the test are to be analyzed, card 5 is not required.

Card No.
6

$77-80$
The card sequence $(4,5,6)$ can be repeated as often as required by the user.
III. PERCENTAGE MAXIMUM POSSIBLE GAIN

III. 1 Introduction

A computer program to calculate the percentage of maximum possi-'
ble gain (PMPG) was developed per the specifications contained
in a memo by Robert L : Brennan, entitled "Statistical Techniques
for Measuring Effectiveness and Gain with Instructional Programs."
III. 2 Program Description

The PMPG progran computes the following statistics for student post- and pretest data for each week (or course unit)
A. Summary Statistics:

1. The number of questions on the test
2. The number of students taking each test
3. A frequency histogram of student scores
for each test
4. The computed PMPG
B. PMPG Computation

As specified in the above referenced document, the percentage of maximum possible gain is computed from the following equation:

$$
\begin{aligned}
& \text { Ny } \mathrm{y}-1 \\
& \text { PMPG }=1-\frac{y=1 i=0}{\frac{1}{N x} \sum_{x}=1 i \sum_{0} \psi x(i)} ; 0 \leq \operatorname{PMPG} \leq 1
\end{aligned}
$$

where: $N x=$ no. of questions on the pretest

$$
\begin{aligned}
& x(i)=p \quad x=i=\text { probability that a } \\
& \text { student scores } i \text { questions right on the } \\
& \text { pretest } \\
& N y=\text { no. of questions on the posttest } \\
& y(i)=P \quad Y=i=\text { probability that a } \\
& \text { student scores i questions right on the } \\
& \text { posttest. }
\end{aligned}
$$

III. 3 Program Use

A. The PMPG program requires two magnetic tape files, one for pretest data and the other for posttest data. The program was written for the specific case of the preand posttest magnetic tape data files that were created for the Annapolis evaluation. The student records were sorted on tape alphabetically by volume (for volumes A through 0). In addition, a test value of -1 separated each volume (the student records for each volume from the student records for the next volume).
B. The program was written in Fortran IV for use on the IBM 360/65 under DOS.
C. The following are the input card and tape formats uscd:

1. Card Format

Card No.	Col. No.	Description
1	1	Vol. $=$ The volumc to be processed
	3-5	NPRE $=$ no. of questions on the pretest
	6-8	NPOST $=$ no. of questions on the posttest

2. Tape record format (for both post- and pretest
tapes)

Record Format
A2

3X
A1

140X
A2
\therefore.

Description

The end of volume test value ($=-1$ indicates the last record for that volume has been processed

The volune letter of the current record

The student's score (no, of questions answered correctly for this volume.

3.4 COPIES OF PROGRAMS

Copies of the prograns were submitted by contractural requirement on 1) a magnetic tape and 2) hard copy listings. Copies of the progranis are referenced as Amnapolis Evaluation, Vol. 3.

1
\therefore

